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Learning by explaining examplles to oneself: A
Colnlpttational Model*

Kurt. VanLelin and Randolph M1. Jones
Le3 inng R esearmch and Development Center

University of Pittsburgh

Abstract

Se~wea Invs Ia Ion hae found that students learn more when they explain
ex a I IIp I to thlinisekeq while studying themi. Moreover, they refer less oftell to
thle examples while solving problems, and they read less of the examiple each
ime 1hey refe-r to it. These findings, collectively called the self-explanation

Olet . have beeni reproduced by our cognitive simutlation programn. Cascade.

Mloreove'r. when ( ascade is forced to exp~lain exactly the p~arts of the examples
ili Ia subject explains, then it predicts most (60 to 90%) of thie behavior
hal thle mtbject exhibits during subsequent problem solving. Cascade has two
klis (if learninig. It learns ni rules of physics (thle task domain used ini tHie

ht uman dat a modeled ) by resolving imipasses with reasoning based onl overly-
general. non-domaini knowledge. It acquires procedural comipetence by storing
its defrivationisof prollemisolutions and using themn as analogs to guide its search
1*ori sol it ions to novel prolC111.

THE TWO MAJOR OBJECTIVES OF THE
CASCADE PROJECT

As Toit Dietterich poitedl out in the ke 'ynotp address of the 1990
Mlaclhie Learniing Conference. one of the biggest challenges ini machinie

learnuing is to get machines to learn fromn ordinarv instruictional mat erial.
such as that used to traini scientists, engineers and technicians. Not

*Thiq re-Rearch was supported by the Cognitive Science division of the Office of
Naval Reqvarrh tinder contract N00014-98-K-0086 and the Information Sciences divi-
,ioni of the Office of Na~a! Researrh uinder contract Nt)0,14-86-N-(J678.



only is this ain exciting intellectual challenge. but it might help alleviate
IlIe nolorious proldem of getting expertise out of the culture of ex)erts
and into an operal)le form. The expert systems community recently
realiZcd that not all experts are good at explicating and explaining their
knowledge. but instructors vary in quality too. so a common practice
nowadays is to acquire knowledge for an expert system from all expert
who is also a good instructor. Often, there are textbooks written )v
very good instructors. Utilizing this material requires having the kind
of system triat Dietterich envisioned.

The program described here. Cascade. is a direct response to Di-
etterich's ('hallenge. for it call learn how to solve Newtonian mechanics

problems fronm tile same materials that undergraduates learn from. How-
ever. it is only a partial solution to the problem. because Cascade cannot
read. The information in the prose parts of the textbook is given to it
in a pre(ligested form. As will be demonstrated later. this information
is not as helpful in solving problems as one might think. People and
(Casca(le acquire much of their problem solving skill by solving l)roblems
and 1)'" studring the textbook's worked example problems.

The second objective of the research presented here is to integrate
and deepen tie theory of skill acquisition. As theories go. the theory of
('ognitive skill acquisition is in its infancy. Theories range all time way
from tihe highly integrated. nomological theories of certain natural sci-
e(-ics to loose collections of ideas which can be woven together to explain
phenomena. The current theory of cognitive skill acquisition is in tile
collection-of-ideas stage. Given almost any behavior, a cognitive scien-
list call often string together ideas from psychology and Al that will offer
at least a plausible explanation of the phenomenon. This is certainly an
advance over the state of the art 25 years ago. However, the theory is
not as itlegrated as it could be. For instance, no one has built a comI-
pitational model of skill acquisition that starts as a novice and slowly
becomes all expert while being trained on the same material as humal
si 11dent1 s. Several models of pieces of this process have been built. includ-
ing Sierra (Vanlehn. 1990). Pups (Anderson &" Thompsoln. 19-49) and X
(Pirolli. 1987). The reason that cognitive science has no simulated stu-
dents is not just because it is technically difficult, but because we do not
know which of the many ideas floating around should be woven together.
Moving time theory of cognitive skill acquisition out of the collection-of- F etCn _"
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idea-, stage all(l into a stage of integrated student simulations will re-
(Iiiiirv deep thi oght anid signiificant new empirical work. Development
of st udent siniula tionls sliotid go1~ ha 11(-ill-ha 11( with these enmpirical ad-
vanices. b~ecause such simulations are tile onlyv wa, to demonstrate tile
coinpu tation al coherence and emipirical coverage of anl integrated t heory
of cognit ive skill acquisition. Cascade is intendled to 1)e a step) furt her inl
that it incorporates new emlpirical evidence fronm a study' b) 'vChi. Bas-
sok. Lewis. lleiinann and G41aser- (1989). However. Cascade is far from a
coimplet e simula tion, lbeca use some important cognitive processes. such
as reading. have been deliberately' omitted from the model.

I ntecresting new ed1ucatIionial technology may' result from developing
tie simulated stud~ent s that are reqluired of anl integratedl tlleor ,N of cog-
nit ive skill acquiisition. For instanlce. a simulated st udent might be a
valilalle tool for training teachlers. Simulators have beeni successful ad-
j~ios inl trainling other skills, ranging from flying airp~lanes to trading
st o cks. It miay le a worthwhile investment to use simulators to train
I eachIers inl thle skills of selecting material to teachl. organizing it. ex-
plaiiiig it . detecting student iilisconcelptions and remiediating them. Ini
aIddition to teacher training. there are ot her p~otential applications for
su ila ed stumdent s as well (Van Lehni. 19911)).

The lack of anl integrated theory* prevents development of many ap)-
plica tions, not just educa tionial onies. Thle p~roblenm is that a theory ' vhat

iiii t lie collect ioni-of-ideas stage often p~rov~ides multiple or vague expla-
ta t ions of phienomiena. whmichI means that it can make only ambiguous

or vagiie predict ions at best. Yet many appfications. such a-s simnulat ion.
require thle theory to make unamlbiguous. precise predlictions. Until our
uinderst andling of cognitive skill acquisition is good enough that we canl
make such p~redlict ions. nianY applications, are beyond our reach.

This chapter is intendled as a summiiaryi of tile results so far from the
Cascadv project. The project has gonie through th~ree major p~hases. Ii
lie first phlase. the programn was developed and showin capable of learn-

iig NPv~ Ioliani mecia nics correct lv ( Van Lelmn & Jones. inl press). In the
seCOnd phase. tilie major finidinigs from thle C'li et al . stuidY were siilli-
lated t \aiilelii. JIones k- ('li, inl press). Ini the thlird phase. protocols of
each of lie 9 subjects in the Chi study were simulated individuall * . The
hird phlase is ongoing, so we can present only somleof the planned analy-

sei li Ilm r t ilar. we evaluate the overall fit of Cascade to thle protocols.



NNhich is import anit for seeing [low well (Cascade functions as a simulated
simb,ion and as a knowledge ac(Iidiiion s 'ystem that wou~ld satisf 'y Di-
et terich's challenge. T1his chapter follows the historical development by
first dlescrib~ing the C'li et al. ( 1989) study:, then describing Cascade.
lhen de-cribing how Cascade accounts for the C'li et al. findings. thuen

de4sc ribinig how it shiinla tes individunal subjects.

THE SELF-EXPLANATION EFFECT

One or thle major openi issues in cognitive skill acqluisition is minder-
standingp what happens whenl peop~le study examplles. (Ani example is a
prolemul togethler with a solution that is printed or demonstrated for the
mt ident l. ) Mucth research has shown that when people are given inst ruc-
tion consisting of theorY. examplles and explanations. they rely heavily
onl the examples (e.g.. Anderson. Farrell &- Saurers. 1984: Swe~er &-
Coop4'r. 1985)I. Ini some cases they* seeuu to ignore the theor *y andl expla-
iat ioiis. and in other cases their learning is actually retarded by them
(v.g.. LeFevre & Dixont. 1986: ('harne 'v. Reder. &, Kusbil. 1990: Ward &
Sweller. 1990). Becauise examples seem to (10 much more of the teaching

ham %%-was IprevionslY thought. it is important to understand how t hey
wor1,k.

(Ili et al. ( 1M() took a (direct approach to understanding how stui-
dlents st idv exanmples. They collectedl protocols as subjects studlied ex-
amples in classical particle dynamics. the first topic in a typ~ical first -year
collego ph *svics course. Nine subjects studied the first three chapters of a
colloge text buok, then read thle prose part of a chapter on Newton's laws.
TllvY took a test onl their undlerstandling of the chapter. then studlied :3
vxaiuples all(l solvedl 25 lprolleuts. Protocols were taken as they- st udied

lie examipleg and~ solvedl the problems. Oin the basis of the scores onl
problemh solvinig, the subjects were divided into two groups. The 4 slit-
denits 'vi Ii thle highest scores, were called the Good solvers: the 4I students
withl t he lowest scores were called Poor solvers, and one student was not
analYzed (see C'li andl Vanb~ehin. 1991. for a discussion of the subjects'
backgrounds and the inediani-split procedure). Since the students in both1
groups scored the same on pre-tests, the Good solvers seeined to have
learnepd more (luring the experiment. Using protocol anialysis, Clii et al.
atfvmnpted to find( out how the Good solvers managed to learn more than

4



tIle Poor solvers from the same material. They found four differences:

I. The Good solvers uttered more self-explanations as they studied
examples. whereas the Poor solvers' comments were mostly l)ara-
phrases of the examples' statements.

2. All stidents commenled frequently on whether they understood
what they had just read. The Good solvers tended to say that
thev did not understand what they had just read. whereas the
Poor solvers tended to say that they did understand. However. the
Poor solvers' scores show that they understood less than the Good
solvers. This indicates that the Poor solvers* self-moniitoring was
less accurate than the Good solvers'.

3. During problen solving, the Poor solvers tended to refer back to
the examples more often than the Good solvers.

I. When the Good solvers referred to the examples. they read fewer
lines t han the Poor solvers. The Poor solvers tended to start at
1 he beginning of the example and read until they found a useful
liie, whereas the Good solvers started reading in the middle of the
example and read only one line.

Similar findings have also been observed in protocol studies of stu-
des, learning Lisp (Pirolli & Bielaczyc. 1989: Bielaczyc &, Recker. 1991 ).
elect rodynamics (Fergitsso-Hessler &. de Jong. 1990) and biology ((hi.
(l, Lvew. (him. & LaVancher. 1991). This cluster of findings is called
tle self-explanation effect.

THE CASCADE MODEL

A commsenslms has emerged in both machine learning and cognitive
psychology that it is important to distinguish two kinds of learning:

O (ie kind of learning is responsible for getting knowledge from the
environment into the mind of the agent. This is called knowl-
edge acquisition in the cognitive skill acquisition literature and
knowledge-level learning in machine learning. There are many
possible learning processes. depending on the type of instructional



information available iii the environment and the type of knowl-
elie 1o he acqu.,ired. The Cascade projoct. for instance, focuses on
how agents can learn college physics by studying worked example
exercises and solving problems.

The other kind of learning increases the effectiveness of knowledge
that is alread*% in the inind of the agent. This is called knowledge
compilation or knowledge tuning in the cognitive skills literature.
and symbol-level learning in machine learning. This class of learn-
ing iechanismis includes explanation-based learning (EBL). chunk-
ing ( Newell. 1990). production composition (Anderson. 1983), and
inav ot hers. Some of these nechanismns provide explanations for
robust findings in the skill acquisition literature (e.g.. Anderson.

1987: Newell. 1990).

In order to determine whether the learning in the ('hi et al. study
was knowledge acquisition or knowledge compilation, and to set the stage
for developing a sii(lated student. we began by developing a problem
solv ,r that coild solve the problems in the study.1 The solver was based
oit past itechatics probletms solvers (Bundy et al.. 1979: Larkin. 1983:
Novak k- Araya. 1980) as well as our informal inspection of the (hi et
al. protocols. The resulting solver had 62 physics rules and a host of
iat h,,iatical and common sense rules. Those 62 rules became the target
knowledge base. The first goal of the Cascade project was to understand
it hen I lev were learned and bow.

lii order to find out where the target rules could be learned, two peo-
ple wIto were not involved in the development of the knowledge base
deti rtnind whether each rule was mentioned anywhere in the textbook
prior lo tht poinl where the examples were introduced. There was 95,'
;tg4r,t(teut bet wer ni thf Iwo judges, and disagreements were settled 1)y
a third jidge. They det ermined that only 29 of the 62 rules were men-
tioted in tile text. The other 33 rules would have to be learned during

ixanihl,, studying or problem solving.2 This indicates that knowledge

'Artilly, it could %olve only 23 of the 25 problems. The other two involved
kinernatics knowledge that we did not bother to formalize. These two problems will
he ignored throughout the remainder of the chapter.

2Thev could also be recalled from earlier training in physics. but there is evidence
that hi seldom occurred (Chi & Vanlehn. 1991: VanLehn. Jones &' Chi. in press).
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arq itisiliurn nlitst be going oin during exam ple stutdying and(/or p~roblemn

sol vi ,ig. K nowledge compjilat ion alone would not suffice to explain t he
su1bjec ts, learning.

Cascadle models two basic activities: exp~laining examplles andl solv-
ing p~rob~lemis. Knowledge acquisition goes onl during both. Because the
I '% JW of jpli ' sics problems usedl in Chi*- st udl inivolve only monoton1Wic a-
s4)liiii. C ascade uses a rule-based. b~ackward-, chaining theorem lprover
(simiilar to Prolog) to imln)ement bo0th activities. A physics examiple is

presented~ to Cascade as a set of prop~ositionis representing the givenls
of the problemn. a list of sought quantities. and thle lines of the prob-

lein s solution. For instance. the example of Figure 1 is represenited withi

lie iiifoiiiatioii of Table 1. (Cascade explains each line 1y ' v roving that
it Follow-, from the givents and the preceding lines. To solve a p~roblemn.

Cascade is presentedl with propositions represenitinig the problem's givens

all(l is asked to prove a proposition of the forum "Tile value of Q is X"
for cachi solight quait it ' Q. III thle process of proving the propositioni.
Ca'cadle derives a vale for the variablle X. thus solving that p~art of thle

p)rollem. .Alt hotigh this nmodlel of problem solving and example exp~lain1-
hip, is 4lea rl *v too simpled to cover all task dlomains. it suffices for physics
aniid oh ler task donnaijis dloiminlated 1) mniot onic reasoning.

Cascadv inicludes two kinids of analogical problem solvinig. Bothl types
of ania logy begin by' retrieving ali examplle amnd ma pping thle exampi lle's
giveni s o he lip crrent problmi's givens. These ret rieval anmd inapping lpro-
cess'es uIsually ' correspond to overt behavior. Tile subjects flip thbroughi
lie textbhook pages in ordler to locate anl example. then look back and~

f ut I bet ween tilie exampn le an 1 p1lrob~leml. compilarinig the diagraimi and
ex.t tha t describe the examlples problem with the diagram and text

des-crik ing the problem tihe-% are t rving to solIve. This behavior gener-
a;lIY orcul S (JmlY once l)er prob~leml. All thle exam ples and miost of the

1)rolviiis are accomipanied by' diagrams. and usually thle -subjects would
search for aii analogous examiple after looking at thle diagram and before

rea11ding 1 lie probllenm. Thtus. we think that the major process of ret riev-
ip, an aimalogotis problemi is based onl recalling. findinmg and comparing

(iiagraims. This retrieval process was not modeled in (Cascade. Tile svs-
temi was simply told which examples the subjects retrieved, and forced
to retrieve the same ones.



Problem: The figure on the left below shows a block of mass m kept at
rest on a smooth plane, Inclined at an angle of 35 degrees with the
horizontal, by means of a string attached to the vertical wall. What
are the magnitudes of the tension force and the normal force acting on
the block?

Y

N

F

mg

Solution:
(1) We choose the block as the body.
(2) The forces acting on the block are shown In the free-body diagram
on the right.
(3) Because we wish to analyze the motion of the block, we choose ALL
the forces acting ON the block. Note that the block will exert forces on
other bodies in Its environment (the string, the earth, the surface of
the incline) in accordance with the action-reaction principle: these
forces, however, are not needed to determine the motion of the block
because they do not act on the block.
(4) Since the block is unaccelerated, we obtain:

F+N+mg=0.
(5) It is convenient to choose the x-axis of our reference frame to be
along the incline and the y-axis to be normal to the incline (see figure
above, right).
(6) With this choice of coordinates, only one force, mg, must be
resolved into components in solving the problem.
(7) The two scalar equations obtained by resolving mg along the x- and
y-axes are:

F -mg sin 35 = 0 and N -mg cos 35 a O.
(8) From these equations F and N can be obtained if m is given.

Figure 1: An example



Table 1: An English version of the representation of the example of

Figure I

PrIoblemI giv~ens:

The current situnat ion is iatined Lx.

lx is a st ailardl-gravity" situnation.

Illock-ix is a block.

St ring-ix is a niiassless string.

Plane-ix is anl frictionless inclined plane.

lBlock-ix slides oin Plane-ix.

String-ix is tied to Block-ix.

Illowk-ix is at rest.

Illock-ix is ab~ove Plane-ix.

Si ring-ix is above Block-ix.

StS iig-ix is to the right of Block-ix.

Thle inclina tion of Planie-ix is :35.

1Thle intclina tion of St ring-ix is :35.

Thie mass of Block-ix is i.

lP ol 14,Vn soulght 5:

The riagn if tid of t he tension force onl Block-ix due to St ring-ix.

The inlagnitld~e of the normal force oin Block-ix due to Plane-ix.

Sollitionl linies:

T'he set of bodies of lx is lBlock-ix.

The wlt of a rrows on thle free- body diagramn for Block-ix is { an arrow

a t inclinia tion :15 pointing lip. anl arrow at inclination 115 pointing

ii p. ali arrow at inclination 90 p~oint ing down)1.

Tie set of axes onl the free-body diagram for Block-ix is {an x-axis

at Inclination :35. a y-axis at inclination 115).

The magnitude of the tension force onl Block-ix due to String-ix is

0 -0 + ( I( ig) sin(35)).

Thel nagnitide of the normal force onl Block-ix due to Plane-tx is

1) 1( my) ros(35 tt± 0.

9



One of I lie two kinds of analogy is usedl to mnake search control (leci-
s10115. It collis into0 playN wvleii (Cascade has two or more rules for acliiev-
iiig at goal anid it needs to select aiong themn. It uses lte antalogical
mappinig to see if the exampille's derivation has a goal tliat. is equivalent

tofle goal that it is current 'lv working onl. If it finds anl equi~a!eiit old

go)al. thle ru le thiat a chieves the old goal is chosen for achieving the niew%
goal. Thiis ItvJ%-e of anialogv is called analogical search control. because it
lises tlie examplle as a source of advice onl which of several alternjatives
to trv first . For inst ance, a. student might say. "I cannot tell whet her I
should project this onto the x-axis or the y-axis, At anl analogouis point
Ii tie( exampille. time , projected onto the x-axis. so I'U try that too."

A ii1alogical Search conitrol is also used ili the Eur~ ka systeni (.Julies.I9.
tis %ol iI miv

, lite second t ,ype of analogy is used whent Cascade cannot find a rule
hiat will a ppl ,v to the current goal. It uses the analogical mapping t~o

11-Y to fi 11( a line ili a ii ol'l example that it canl con vert int o all appro.

priao iile. It looks foi a litle inl the exanhil)les solut ion that nient ions

Ihe i urrenti goal (or rat her, a goal eqluivalent to tile current goal under
het( iippi ng ) M.\ost lines are eqluations. so it is simple to convert a

Iimij ti a eiiiporar v rule which canl theni be used to tr v to achieve thle
Lgoal. F'or ilis alicre. a stuidenlt might sa ' . "I need some way' to get t ite
I 01151011 of st vii1Vg A. The -xa inple has a line saving that -t ring F S tenision

I,; lm q 4i :t ). Those two st rinigs are analogous. a 11(] :10 degrees is q; al-
opgoiis to -4-7 dlegrees ill thIiis prohlemi. so I bet that thle tenlsionl of st ring~

.is ii il5 .'This t ,ype of analogy is called transformational anlal-
1g.after aI ;i iiila r met hiod exolored b).y Carbonell ( 190,6). .As Carbonell

discovered. t ransfornmatioinal analogies often Yield wrong answers.
.* naj'r l-ifleremice b~etNPi we ie twokinidsof analogy is that anialogical

sea ij.(0 lit rol refers to tflit, rules that achieved goals dIurin~g t(lie solut ion
14 ;m 1xa in 1df. w liereas t ranusformnat ioiial a nalogy oly refers to ft lines
of tw li olilit ion. When ( as-ade explains anl examnple. it stores, in nmentor ,-
a ;#-t of t riplws. each of whlilch contains the exanilie's name, a goal anid

liev 1.111 thIiat acl eved it . Thes;e t riples are wla t analogical sea rch cont rol
seart les through. If aii example is not explained. then no derivation is
recordled. so analogical searchi control cannot get any' advice froln that
exampille. Oil the other hand. transformational analogy refers onl~y to
flte ;olw ion lines. These are present regardless of whether the example

10



is explained. since theY merely rep~resent what the student call see as
I elook at I li p~age coni ming tile exam ple. Tims. t ransformali onal

a nalogy can finction even if the example has not been explainied.
( ascadves main knowledge acquisition method is called exp~lanat ion-

b~asedl lea ml hg of correct ness or EBLC (VanLehin. Ball k Kowaiski,
199) . Th'le basic idIea is; to divide knowledge into domain knowledge
and~ non-(d ounaini knowledge. Domain knowledge represents rutles t hat
I he si deli believes to be correct and appropriate for the task domain.
Noii-doiuain knowledge represents- rules that are believed to b~e incorrect
or relevant on] *vto other task (domains. The most important non-domain

ru1les for lea rning are overly general rules. They canl aplyl to many sit na-
lionls. buill theyN ofte di (raw incorrect conclusions. For inst ance. a domain

rule is '-If thepre is a tension force F caused by a string S, and the tension
ill thle st ring is T. then the magnitude of the tension force is also T.-'
Anl overl ,vgeneral rule is. '1f there is an emtitv F. with a part S. and a

propl)PIt ,y of part S lias value T, I lien a lprolperty of the ent itv F also has
valivn T.- This rule happens to b~e a generalization of thle domain rule.
1)11 aq arguied in Va i eliii and .Joines (in press). not all domain rules have
pla iible overly N general counterparts.

Tliv basic idea of EBLC is to use overly general rules whenever domini
rules fail. then saea sp~ecialization of the overl 'y general rule as a newv
doiiaiiu rule if all goes well. For instance. thle (lomiain rule jusi mentiioiied
s learned 1), specialization of thle overly general rulle. EBLC begins-

101p) C ascadle roaches an impasse that is caused bY missing rules in
thle knowledge b~ase. Ani imipasse is defined to be anl occasion xv'lien thle
cu trout goal iiatchies iiome of thle knowvn dlomain rules or p~rob~lem givens.

liinpas-o cani he caisedl 1)by mlissinig (domain knowledge or by reaching the
(111d of a (lead eind pathI in thle sea rchi space wvhich could have been avoidled
1)y making a better search control decision earlier. Cascade explicitly
Chocks for t lie latter(,I possibility'N before deciding t hat anl impasse is caused

bYmssiiig knowledge. To resolve a missing-rule impasse. Cascade tries
o 1iv alli ovel geiieral rule to achieve thle Mtuick goal. If thle use of suich

a ruilt i iiiat el 'vleads to achieving tilie current top level goal (i.e.. to

exlplaini a line or to finid the valuie of a sought ), then Ca-scade forms a
new domaiin rule that is a specialization of tile overly genieral one. The
specializatioii is chosen so that it is also a generalization of thle particular
ii-spge. Fo, inist anice. onl oiie p~roblem Cascade could not (let ermine the



pressiure ill a p~art of a container event though it knew the pressure inl the
whoe le. Si nre t here was no alt erna live solution to the problem uinlg its
domlain ruiles.(i ascade decided that it was at a missing-rule impasse. It

a pplied t he overly-general rule. "If anl ob~ject is composed of p~arts. thlen
t fit property %-aluies of the p~art s and thle wholes are the same." This rule
a pplica tion idl iatel 'v ledl to a solution of the p~rolem. C ascade t hen
formied a new dlom~ainl rule. "If a container has a part. thien the prlessure
ill tihe part is equlal to tile pressure inl the whole." Thus, C ascade learnled
a correct rule of p)hYsics by specializing an overly general rule inl order
to resolve all imnpasse caulsed by * v issing domain knowledge.

Cascade hlas a secomd technlique for learning new rules. It ap~plies oly

whlen it is explaining all example andl at tenillting to prove a lproposit iont
t Iat hias no0 variables. If it canniot prove the proposition withI either
doma11in ide,; or- overlY general rules, t henl it gives up l andie silflv accelpts
hat t he p~roposit ion is trile. It also builds a rule t hat sanctions tis in1

fl~tuir si~liar ases ~Ie rlessay ill essence. that if a later problemt
is allalopolls to t his prob~leml. then thei anialog to this prop)ositio all a

be assumie 114'lrue for t hat p~rob~lem too. This type of learning is called

aniialtogira a l)(l ict ion.
Frolm a inachInlle learnili , )Oillt of view\. Cascade does hothI kniowledge-

lIe le ,~ l ( via E 13 I and( a nalogy abhduct ion) and symbol-level learn-
ilig fvia the( savinlg of (letlivat ions. which are used by analogical search
(4 ol )h ELCL anld ania logy abhduct ion are bo0th triggered by' impasses.
,so I lie w \ill often be referred to as imipasse-driven learning.

Aa millar*v Table 2 lists, Cascade's main processes. Notice that a
l141\k 01lV has beenl slipped ill. Cascade call be told to ignore anl exampllle
line inst cad of self-explaining it. a trivial process labeled "accent ance-
ill t iet able.

Cascade's learning is simiilar to those prop~osed bY existing i.,-e
of -kill acquisit ion. We believe that analogical search conltrol canl evenl-
Iill ' lv pirovide all account for thle practice effects, usually' explainled by'
k n iW lvdw. comnpilaltion (Anderson. 198:3). chunking ( Newell. 1990) anid
othleu learnling nilchlanislns. EBL( is similar to proposals by Sclik

19,86). Lewis ( 1988), Anderson ( 1990) and others. which also acquire
new knowledge at imipasses by specializing existing, overly' general knowl-
edlge. Alt houghl all these models of skill acquisition are simiilar ill spirit,

hey1 differ ill significant ways. For more oin the Cascade system and a
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T~able 2: C'ascade's major processes
Example studYig

" Self-explaiiat ion: Prove a line via backwards chaining.

" Acceptance: Ignore the example line.

Problem Solving

" Regiflar problem solving: Find a value for a sought via backwvards
chaining. At search control choice points. use analogical search
conitrol to decide which rule to apply.

" 'Iransfm-irat ional analogy: Find a hle ini an example that could lbe
adapted to achieve the current goal.

lIiipaisse-(lri 'en learnmng

" Explanation-based learning of correctness (EBLC--): Apply an
overly genieral rule. If that leads to success, save a specialization
as a newv dlomain rule.

" Analop- abduction: Like transformational analogy, except a rule
k, built so that fut ure occurrences of the goal wvill be handled thle
Isaije wvav.
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(let ailed compja rison with its predecessors. see Van Lehnl anid Jonkes (inl

pr(.sS).

MODELING THE SELF-EXPLANATION EF-
FECT WITH CASCADE

A simpille hv, poi lesis for explaining the four major differenices between
Good and Poor solvers is that Good solvers chose to exp~lain more ex-
amplle lines than Poor- solvers. To test this. several simulation runs were
iiade. All t hese simunla tions began withI the same initial kniowledge. Thle
iil iial domain knowledge consisted of tile 29 phYsics rules, that three
Jud~ges f( lI id to he present inl the text (see the discussion at the begini-
iiing of tilie preceding section). Thle rest of the initial knowledge b)ase
consists of 45 non-doimiain rules. of which 28 rep~resented common senise

phtysirs (e.g.. a taut rope tied to a object pulls onl it ) and 17 represented
()vr-gnerlizt inssuch as "If there is a lpush or a p)ull onl anl object at

a err ita ii anigle. thlen there is a force onit life object at thle samle aingle."
So \V ilehni. .ioneq antd (Ill (in pres) for a list of the overly general

rill-

Ilk lpiiiciple. C ascade cali use regular problem solving or- t ransforina-
ioiial anialogy at any goal. For the sake of these experiments, we gave

it a fixed st rat egy. It would first try' regular problem solving. If t hat
fa iled dime to iin ig domin knmowledge. thlen imipasse-driven learning
was a pplied. Transformiat ional analogy was used[ only as a Iawo resort.

The first sinmilation was intended to model a very good student whlo
expaiis every, line of every exampile. Cascade first explained the :3 ex-
a iimi de ill tilie sil *dv. thlen it solved thle 23 problems. (Tile 2 p~roblem.-,
hat are nmot solva ide b), thle target knowledge were excluded. ) It wa.,s

ablde to correct 'lv solve all tilie p~roblem-,. It acquired 23 rules: 9 while
Vxplaiii Pxamiii~es and 15 while solving problems. All but one of the
r'lie was learned by, EBL( : analogical abduction learned the ot her. The
new\ ni Irs, are correct pit'ysics know ledge. allowing for thle siiplicit * of
ime know ledge representa tion. Moreover, they' seeim to havye thle right
dlegree of generalit ' inl that none were applied incorrectly anid nione were
inapp~licable when they should have beeni applicable. However, some of

hill rim Vs dealt withI situations that only occurred once inl this problem
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set. so 1 hie , were never use(I after their acquisit ion.
TI Ir secniil qiliuir Ia I iou was int ende'd to sunllula to a very p(oor Stllidelt

who does rIo self-exjplaiat ion. Because none of example lines were ex-

plaiind. there was no opportunity' for EI3LC to learn new rules (lurinig
exa iiIlple st ud ,ving. nor were any derivations left behind for use by % analog-
ica I sa rchl con Irol dutring later prolein solving. Cascade wvas given tilie
samer 2:1 jprol)biis given to it in thle good sItudent simuulat ion. It correct] lvN
solved 9 prroblemns. Apparently these p~roblems~ require only knowledge
from I tie text. As Cascade solved these problems.Cascadle learned :3 cor-

rec ru14 via Eli L( . On (6 ot her problemus. Cascade founrid anl in correct
solution. ElI- L((id not occur onl these p~roblemls. Onl thle remtaining R
urolrlemus. CascadIe failed to find anl'y sob: lion or its searc ci went oil for

,o iiat It wvas cut it off after 20 minutes.AthuhE Cwa e(
ext (iisivel 'v onl thIiese problems, the rules- produced were alwaYs incorrect.
Oni thle assiiipt ion that a poor Mtudent "-old( not believe a rule unless it
lvd to a correct solunt ion to a prob~lemi. rules, acquired (during failed solui-
lion at I mp1111s were deleted. Thtus. the poor studlent simuilatIion acqiired
onlY 31 rules anrd solved onlY 9 p~roblemns correctoly.

Explainig the self-explaniation correlations

Ca scade should be a ble to explain thle fomi r tiffereiices ob)served )l vw Ci
0t al. ( f),!) bet we-oen Good alid Poor- solvers. Assuing t hat t he, nui-
her of sol f-e'x pla rat or *v utterances; is direct lY proporl ional to thle numiber
of line,, explained during example st ud 'N.ing. thle job facing Cascade is

toexpla in wh lioxpla iling miore fines causes, better scores onl quant it a-
Iii r 1t- tests (fi udi g I1). more accura t- self- nioniIt ori rig ( finding 2) andl
riron'v hlrelil (finidinig :1) aiid miore econiomuical reference to thle exampnlles

l,11o clNit ast H)1'o~ IP good ainl] poor student simulations mndi-
catlips t hat C ascade call reproduc, tilie positive correlat ion between tilie
ii th l)P of oxaniipe Iinie-, explained anrd t lip numtber of problems solv~ed

corec lv Iuin e goodl strdent siiiiulat ion, it explainied all I lie exair-

lp~ it linvs and1( go~t all 2:3 p~roblemus correct: onl thle poor st udent sirritrlatIionl.
it explained none of the example lines and got 9 of the problems correct.
Knuowinig tile operation of Cascade. it is clear that having it explain an
jut eriruediate mnii: er of lines would cause it to correctlY answer air in-
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teriieiliate numbller of prob~lemns. So tile two ext reme points (thle two
Si ii tlalIions ) plus C ascade's (lt erIltist ic (lesign are sufficient to lelnoli-
st rat e t lie miii finding of't hie self-explanat ion effect.

One of thle major advant ages of a siniulat ion like Cascade is t hat one
(all ri it m an liv timues withI difIferenit comflponent s turnied offiii order to
asceri a iii w li it siicceedls. In part icuilar, 2(0 rules were lea rned by ' I lie
gim o tudent simiiulat ion and not 1) t lie poor. For each rule, we canl find
out wht'y self-explanation allowedl Cascade to learn it.

First. when iiiore finies are explained. Cascade is mlore likely, to stui-
hip across a gap) in its domain knowledge. Such missing knowledge causes-
imipasses. w hich lead to iliipasse-(lriven learning and the acq nisit ion of
niew inule-, duiring exam ple explaining. Of thle 20 rules thIatI were lea rned
dulring thle goodl st udent simnulation and not the 1p0or. , ( 40(/ ) were
1(,; llcel wile explainiing examtples.

Au'a h gica I sea rchi control also aided thle goodl st udenit simiutlation's

lea rning. Whlen more lines are explained. more (derivat ions b~econme avail-
a bli for analogical search cont rol. Analogical search conitrol tenls to keep)
Ci-cadle onl solumt ion lathis (luring problemi solvring. and( this mneanus that

mv\ iii ,ascs t ha t occur are iiiore likelY to he d te to missing doiiiaiti
knmi wled -e Thius. EliL( is iiiore ofteii aplhiedl to approp~riat e imipasses.
atid( tims itore oft en generates correct dlomaini rules. Of the 20 rules. 9

-I' -t eqire ania logical sea rch control for their acquisit ion.
I liv acqisit ion of rules (luring examp le stu *idying help pro1d0(utce Conl-

texts duiring probblii s;olvinlg that allow EBIC to learn more rules (durinig
proldii solv in iig ven wvithlout t he aidl of analogical search cont iol. Of tile
1 9 riules. 3 ( 1.5,"1 can he acquired during problemi solving even when ana-
Ii pgic a I ea rci cout rol is 1n riiedl off. These new rules also cont ribliIedl to
he i fit rovePivilt ini prolemui solving. Tablle 3 summarizes thle lea rning

of t 14,1 two nul1ls.

Cascade( p~rovides5 a siiiiple explania tion of tilie correlat ion bet weeni thle
aiill~ii of self-explanal ion aiid tile accuracy of self- monitoring stale-
mllil.s Thev explaniat ion assumes that iiegative self- mionit oring state-
iiitt, seg. I dont undi~erst and~ t hat-) corresp~ond to imp~asses. and
hat positive self- monitoring statements (e.g.. "Ok. got that ."~) occur

withI some probability during any non-impasse situation. When more
examiple lines are explained, there are more impasses. and hence the
p~ro)I nrtu of mepat ire self-mniitoring statemients willI be highier. In the



Ti le 3: Ru tles lea rned duii ing Goodl a nd Poor student simnula tions

6 oodl Poor. Whlen ac~tiiiredl
(11 Example stutdying

Problem solvinig
3 3 No ex. st udying rules, no analogical search control

3 0 WithI ex. studying rules. no analogical search control
(1 0 WithI ex. studying rules. with analogical search control

231 3 TotalI

extreitie case of t he poor student simuiilat ion. where no examiple luties are

ex phainiied. all thle self- mtoiiit oriitg st atemnent s during examplle prcssn

XV0I1 hei p~ ~lositive. which is nt far off fronm ('hi et al.'s observat ionl thlat
S5' of Ilie P~oor solver's self-nmonitoring statemtents were lpositive.

Ilv t hi rd anid foti it Ii findings involve the frequency an 111 pecificit v of
ania logical reference,; during problem solving. The number of references

Ilitde li 'v An aloeical search control and t ranisforma tional analogy were
(oiilvdt. WeC assimiedl that only some of the analogical search control
,efi'rieceq to t he dleriva tiuon were overt. atl(] thIat the ot hers were nment al
re(fericcvs t hat wvould itot shtow up in thle (Chi et al. data. This gave us a

pr('ilit i of the freqtueutcy* of analogical referenices. To get a prediction
of H ie specifliil v of antalogical references; (i.e.. tlte number of exaltllil

Iiliev read per. reference). we count ed thle nunmber of lines read b)'y trants-
formait ionial analogy before it found oite it could use. and we assutned
hat,1 souliiiolle ui utg ania logical search cottrol would go directly' to t he lite

w lioss' deriva tion conit ainedl t he sought goal. Given t hese astUitpt iois.

I lie good st 1n(lenit siuttula tioit prodluced fewer and more specific analogical

rvfvpeiceq t han thIe pfotr st udenit shiilat iott. t hus modelitng thle Chli et

al. fintdintg (qep Vailehn. .Jone- k Chli. in press. for details).

Discussion

Alt hough we controfled Cascade's behavior during example studying.
by it her telling it whether to explain the exarniples or not, its behtavior

dtiing problemi solving was dletermnted solely by Itow much it learned
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(I irilig examniple sI tdying. Qutalitatively. thle behaviors of the Good anid
Poor riuns xkvre qulite simiilar to the behaviors of life Good anid Poor
sil iili s (l1in ig problemi Solving. 'The goodl st udent siulat ion teiided
to s1; a X oil solli t iou paiths. uisp reguila r prob~lemn solving more often than
Ira ii ormiia lional an alogy, and learn something from the occasional im -

jms~ws it enicoiunlteredl The Pool- st udeint sini tlat ion tendled to wa nder
(IIhiilii iiipoil tCt I've lpat s. use t ransformuationial analogy more often. and(
learni not linp fronm the man *y impasses that it encountered.

These propert ies of Cascade's problem solving b~ehavior are consistent
withI a preliiiiarv% ainalvsis b)y (h'Ii. VaiiLelin & Reiner ( 198,R). who ana-
lx7PVdl Ilie protocol OoSOf a Goodl solver andl a Poor solver as t hey solved t lie
s;amie problem. The Poor solver's p~rotocol was dlividedl into 7-7 ep~isodles.
amii of I liese. :30 (TY I9j resuiltedl in impilasses,. N ait'Ny of t hese im passes
seemied to resuilt in acqutiring incorrect beliefs. In contrast. thle p~rotocol

of lie Good solver was divided into :31 ep~isodles. of which onl 'y 7 (23 ,:Y(
re1sult ed in imtpasses. lin 6 of these. the Good solver seemued to learn
a corrct lpiere of knowledge. This preliminary analYsis indicatps that
I Io I',qi r solvers, hiad proport iona lly more impasse (:19f/) t hain thlp Good

~ xes( 2:3('; ) xv lilp problei solving. andI that the result ing knowledge
%%11! iii', Oft en iicorrect . rfiis, is just what Cascade (lid1. too.

1Examiiple mildvi yiig took fil a rela tively small proportion of thle time
1hi ats0 ) jcts pent (l nrinp, thli st udY. Not only % wer-e t here only % :1 examt-

l)1#E; roiiipa rvd to 25 problems. thle subjects spent less t ime onl average
siudiga ii examiplle I htani solving a p~rob~lemi. The learining st rat egy of

self-explaiiaiion xvas active only during example stuld*ying. so it comies As
,a su rprise t hat sutch a p~roport ionally small chanige in xwork habits causedl
suchl a large change in the amount learned. Perhaps the most important
r1'sii It fouii I li G"ood /Poor. simiulat ions is an exp~laniation for t his coun-
11eri1it1nitivo filidiiig. The simulations showved that only.% 40' ./ of flip rules

l hYre Ii I lie good sI ilent simu ilat ion anid not bY the p tor were lea rned
(iriiig oxaiiple si udving. The ot hers wvere learned during problem solv-
iigp. Tlik caime as soimewhat of a surprise to uts. There xvere t,.vo basic
reas ii, I hat self-pxllaltiou increases lea rning during p)roblemi solving.

An imupasse w&-s ideniified as% an outcome of an episodIe whenever the qtiudeni
hpti~ves t hati lie next step t hat mhould lie executed cannot be performed. Most t98%ct
of tife inwuasses wpre ideniified bY explicit stiatements such as "I don't know whiat to
io wvi Ii fltip angle.- or -So t hai doesn't work either."
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" Thle rules learnedI earlier allowedl Cascade to travel down correct
sol ili 1) pat us and( ral impasses at lacpr wore it was indleedI

miissing knwledge. Without these rules. the poor student sijolula-
ion could not reach these p~rodluctive impilasses.

" Thev dlerivation al tripies acqu iredl duii ng rederiva tion of thle exa in-

p i lies servedI as searich control adIvice du tring problem solving.
Ilm ht eci Iing to keel) tilie goodI stud(en t qiitidatIion onl solit ion patlits

hat led to jproduc'ive. imissing-knowledge impasses. The poor stiu-

denlt simutmlatIion t ended to wander off tihe solnt ion pathIs. andl reach

impasse where there was nothling valutable to b)e learnted.

It is doit hi [ii that these int eractions would have been discovered wit hout

a simidtion11 as (det ailed as Cascade.

-[hese, resit; tsIa ight its ab~ouit seif-expla nat ion per se. but th li se of
idea lizedI st udent simiulat ions leaves open the quest ion of whet her Cas-

cade (-at act itallY model a real student. The next stutdy tackles this

(1114-0t 7-l

MODELING THE PROTOCOLS OF INDIVID-
UAL SUBJECTS

Tho oh etediv of t he -lt( idv reported in t his sect ion was to find( oit hlow

close ( sc(ecall collic to modleling ind(ividutal subI)ject s. This stutdY was

ii tdeita ken litn lie saine spirit as tile ones in Newell anzd Simon ( 194-2 :

''iiv a prot ocol. ho01w closelyN canl a simiulat ion b~e fit to it? One difference

bwi~et ni this .stu vid and( t hose of Newell and Simon is that thle task domlainl
is phYsics, whtichi is argua blY a much richer task domain thanl thle onies
iI iey\ ;t id Iied. I lowex en. a more import alit I(I iffenence is thItat conisiderab~le

le~arii, lo~ok p~lace (liriniz owt p~rotocols.
A\ Iliird d iffeentce is t hat our protocol., are mutch longer t ha ii Newell

antd Si mion s p~rotocols.which made it impossible to employ their miet hod

of an -is. Lach of tlie 9) slbjects coot ribuied protocols for 3 examtples

anid 2-7 problems. so t here were 252 protocols to anial 'yze. Each protocol
averagedl about 12 pages;. for a total of :3000 pages. Creating prob~leml
behavior graphs for all of theum would be far too much work. Thtus, part of
thli challenge in this study' was to devise feasible methods for measuring
lie Iiiat ch bet wfeen lIe behaviors of Cascade and~ thle subjects.
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Subject Cascade

Figuire 2: Matchinig the behlaviors of C'ascade andl a subject

Figutre 2 shows how the match between the behaviors of Cascade and
,a ;itI)j(vt call le viewed. Region 1 represents behavior that thle subject

exhiIhii ed aid Cascade dlid not. Region 2 rep~resents the behaviors that

are I lie same for b)01I1 agents. Region 3 represents Cascade behaviors, that
I lie sublject (lid not exhib~it. The behaviors in region 3 have two sources.

Soiii are compu~itational exp~ediencies: NWe couldn't get Cascade to do

exactly' what the sublject did. so we had it (1o something else instead.

'riat -soiiethiiig else- shows tip in region :3. .ACascade b)ehlavior will
also be Iit ini regioi :3 if it is plausibly somnethling that the subject

(lit]. It thle p~rotocol happenis to show no signs of it occurring. For
istance. it is known that niot all cases of impasse-driven learning showv

iip as htesitationis or negative comments in protocols (VanLehnl. 1991a).

Wheniever Cascade's impasse-driven learning is not reflect ed by overt
signis of anl impasse in tile subject's p~rotocol. that behavior is classified
a-, regioni :3 b~ehavior.

lit all of the anal ,yses presentedl below. we triedh to determine two

ratios: the amlounlt of (Cascade behavior that is matched by.% the subject
regioni 2 divided 1)*b te i nion of regions 1 and 2). anld the amount of

siubJect behlavior that is miatched by Cascade (region 2 divided 1w the

mijiiios regions 2 and 3). In order to make these comparisons, we had to

find a way to count behaviors, which implies choosing a unit of analysis.
This was not hard for the first ratio, because Cascade's behavior is wel
defined. For instance, we usually used a goal as the unit of analysis and
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coulnlted lie numbller of goals generated b 'y ('ascade t hat were mat chedl
or ii imatIclietl 1) t1w Rill)jeCt . It was not Pas y to (le enine a ulhit of

anal ' sis foi- thle other ratio. the p)ercenitage of subject behavior inatched
b' v Cascade. A variety of units were used. depending onl the typ~e of
anial : sis beinig conduictedl.

l-ive anmal ses were conducted (see Table 4). Because we are more
ilt crest ('( inl getting C'ascade to simulate the subjects' acquisition of
phYsics rules t han inl getting it to simulate the chronology of their rea-
Soilinig. four of time analy' ses ignored the ordler inl which ('ascade and
fte sub~ject madle inferences. Both C'ascade's behavior andl the sub~ject's
behiavior were reduced to sets of inferences. Set intersections andl differ-

eiures were calculated. just as shown inl Figure 2. However, we cannot
cut relY igniore the chronology of inferencing. since the earlier stud l-
dicatedl that analogical search control affects the location of impasses.
wmirli iii tuiirn dletermniiles whtat can be learned dlurinig problem solving.
So at fifthI analvsis was conlductedl inl order to see if the -subjects' choices-
(lii1611Pi problem solvinig could he p~redict ed by analogical sea rchi control.
Af ;I idI-'Script l of how C ascade was fit ted to thle protocols. each of
111'w~ naye wHi he presen ted.

Fitting Cascade

[itt jug (Cascade mneanis settiiig valuies for parameters so t hat the pro-
gra iii behavior mlatchies the given subject 's behavior as closely as pos-
s;ilv. 'Fie paramieters rep~resent the prodlucts of cognitive processes that
are ilot miodleledl 1) ( ascade. and Yet C'ascade's performance depends
mnt I h oultp)lt s of thlese uinmodeled p~rocesses. so they cannot he ignored
vii tireli.

Flhere a IP t wo major types)) of paramnet ers. The first controls initial
k 1omled PeP which refers to t he knowledge possessed b\ a st udent or (-'as-
cad'' juist prior to st udying thli examples. The student's initial knowledge
comie,; fromui reading t he first several chapters of thle text book and from
t llir ("a r-hir ;t iidipes of ph ysics; anud mathemiat ics. Cascade dloes not model
these processes. so it must be giveni ant initial knowledge base. Cascade's
initial knowledge base was always a subset of a fixed "rule library." The
library conisists of 3 buggy physics rules,.4 the 62 rules that constitute

4
t IF, 11img\. rifle applie- F = ma to anY force and not jurt a net force. Another
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Talo 1: .\ ialvses comnpa ring ('ascade's boehavior. to tile Sh(c 'bh
ior.

I . How iiian *v of Cascade's examlple studying inferences were also

inlade bY~ thle Subject?

2. 1 low\ nian ' of the subjects example studying inferenices were also

Iiiadle b~Y Cascadle?

:3. How nian iv of C'ascade's prob~lem solving inferences were also miade

lbY bli sn hjecl?

4. How mtan * of thle subject's prtoblem solving inferences were also

iiiadle hY C ascade?

5. Do thle search contrtol decisions miade by the subject match those
made hYlf lC ascadle?

1w4 I a ri pt (lomiain kiiowle'dge. andl flie 45 non-domnain rufles ineil iotiet
"INIrhiv'r. Seli ing an initial knowledge base can be viewed as set timig 110

hin a r pa ra met ers. one for- each rule inl tilie library. where I means that

l lit, I Ilv is included inl t lie iinit ial knowledge base, and 0 means t hat t lie
tile1 is exclutded.

'Ilie s'foitd t 'ype of p~aramieter controls tile depth of seif-explanation.
Whe l SIti Ivintg examinples. sit bjects choose to explaiin softe lines but not

4)1 hors. 1l 'von whlen they do explain a line, they may explain it onily

downi to a certain level of detail and decide to take the exaimple's word

or t he rest . For inlsta tce. tilie m iight explain mlost of t linhe. F,
- 1V, coq( 30). bitt not b)ot her] to explain where thle inuis sign conies from.

asr' ad flop-, not niodel htow the subjects decide which fines to explain
andl how (leeJplv to explai ii t hem . To simumla te thle outpl of t his decision

-sttthat lie mia of a bodY is equal to itq weight. The thbird assumies thiai thle
Figii of all projecti oins is positive.

'There are mnany, postsible reasons for why subjects do not explain everything. For
instance, the subjects mnay' feel that they already know everything that they could
learii from explaining the ine, or they may feel that explaining such details can be
left mitil qiwh timie &-t fhpY really need to know them. Deciding how deeplY to explain
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mia kit, gprocess. ext ra proposi tioins were en tered into tlie descriptions of
examiple". W lielieve. (Cascade is ahoit to explain soluet ling, it first
clecks I o see if accept (P) is ill thle example's descriptiou, where P is
thev I lung it is about to explaiii. If ani accept(P) is found. C'ascade
miereI.\ accepts P as explained wit hout any furt her processing. iewed as

t);raitu't c selt tlg, this amnoutts to associatinug a binar rv pa ra meter withI
everY cx plaiiia ide object. anid settig it to I if it should be explainied and
0 if' it should b~e accep~ted.

The accept lprolposit ionis are set by inispectinig the subject's protocol.
If tilie sitlject mterelY reads a huie atid says niothing else about it, thenl
;all accelpt propos;itioni is entered for the whole linie. If the sub ject om1its
d(151 si;oIt of a detail inl a linie. t hen aii accept is p~lacedl arouiild tilie
Cascade goal that corresponds to t hat detail. Inl this fashion. the( dat a

corn plet clY determine which linies and parts of lilies are exlplaiuied by.
C ascade.

On thle ot her tanmd . thlere is nto wa v to eas;ilyN determinie what tilie
stidwil '.ctq initiali know ledge is. The wvhole protocol must be examinied. As
will 1)i' seenl lite]r. we somnet imes made mist akes inl selectinig thle iniitial
kmtowlfilge. We -should have fixed our mistakes. rerun) thle sinulat ionls
antd resdonle t lie Coiimparison,; of tilie p~rogram'us out put wvithI the p~rotocols.
1 hi %%ill require montlIts of wvork, so for this chuapt er. wve are forced to
rreu ut thle aialvsswithI our inmperfect choices of initial knowliedge left
n~lIt 

How many of Cascade's explanations are matched?

ihi vset ion discusses the b~ehavior of Cascade anid the subjects as
IhleY explained examples. Goals were used as the basis for dividinig Cas-

Cadv' beltaxioti Itto comuit a Ie im it s. Each goal p~rodulced hrv C ascade
wkas classified accordlig to the method used to achieve it:

" Reg ular explanation: Cascade usedl onie of thle (lotaini rules.

" iiipatsse mlihI leant ig: ascade reached alli m asse.. sluccessfullyN
ap~pliedl anl overly general rule. and learned a new domaini rule via
EBLC or anialogical abduction.

a 16wi is a fasciftafitlg topic for fiututre research.
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*Accep)t withbout exp~laniationi: Thle goal was not processed any* furt--
her. bil iierelY accepted as I rue wvitlioii proof. lbecallse tilie ex-

a inpies- dlescri ption cont ained aii "accept" propositionI for it.

Aggrgattugacross the simulation runs of all 9 subjects. there were
121 goals. Wv located each of these goals in the subjects' protocols.

and ba~sed on hlit talk surrounding them,. classified themn into the samne
It rve cat egories pl its a new one:

" Impasse withI learning: If the sulbject paused. cotuplained about
lite goal or in soime ot her way' showveoi igns of being st uck. t hen wve

classified lie goal as being achieved bY inupasse-driven learning.

" H egnifa r expllauialtion: If tlte subject merelY nient ioned thle goal or
its, conclusions withowut ant % fuss. or thle su bject said nothlinig at all
abhout t his goal Ito did mient ion its- sublgoals. then we classified thle
goal as beinug sol vedl by regular exp~laniat ion.

" .\c(vept withlou t explantiion: If the subject said iiothinig about t his
$! a1 nior its suligoals. lien the goal was classified as beinig acccpted
k\I i lion I exlplaiia t ion.

" I inpasse, and accopt : Sometimes subjects clearly' tried to explain a
Rgoal. but ('oildl t do) it at all. so the ' just accepted tie goal wit liout

prot& T.1his is different fromn the otlier kind of accept ance. where
lie sit bject did not even t rY to explain t lie goal. It is different from
lihe I lier kinid of imp asse beca use no learning occutrs.

la ble -) ;io\ws thli 1121 goals and how they' were classified. Most
10 1h = 'P 4- 2 + 65 1 + 396) goals were processed tilie samte wa '% 1 b ot It
ascaidf anld t lie sn1 hject . so 95'; of Cascade's behavior was matchted 1)

sn libi elaxor which is highly significanit (p < < .001. ( hi-squuarfed
estI .lit order to get a qualitative uutderst anditig of thle shot tcomnings

lin ( 'aqcadfes miodel of' thle protocols. each of I li off-diagonal cells is
di-sc iisseI.

There were 7 cases where Cascade learned a rule and the subjects
were codled as accepting the goal. All 7 cases occur at thle saine point.
onl A line where thle examiiple says. "C'onsider the knot at the junction of

ho flire s iii to ho IIlie hodv.- Explaininig this line causes Cascade
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Table .5: Proport lus of Cascade actions matclhed by subi)jPCt actions

Cascade Sublects
Impasse Imp"" Regular
resolved unresolved explanation allenlhl Totals

Impas + E.BLC 9 0 10 0 19
Impasse Anal. Abduct. 0 2 0 7 g
Regular explanalion 0 0 654 39 693
Acceptw/o ex lanation 0 4 0 396 400
Totals 9 6 664 442 1121

lo learnI a new rule via analogical abduction. However, only 2 of the 9
sub)jects 'ohiiented about this rule during example studying. The other
7 said nothing at all about the fine wherein this rule would be learned.

I0 Ihey were coded as accepting the goal without proof. We could have
made ('ascade accept the goal as well. which meant that it wouhln't learn
Ihe knot rule. During later problems that had three strings converging
on a knot, this would cause Cascade to reach an impasse and use trans-
format ional analogy. Unfort unately. (ascade's transformational analogy
mechanism is not powerful enough to make use of the knot-is-a-body
line in the exanl)le. WVhen we increased its power so that it could use
this line, it lecame too powerful and would draw analogies that were
so far fetcheId that no subject would consider them. This led us to in-
vell analogical abduction. which is a novel type of machine learning (see

VanLehn k .lones. in l)ress. for discussion). In order to test it out. it
was included in (ascade. However, it is clear from this analysis that
there are empirical probJems withi it. If an example's line really does
cause analogical abduction, which is a formi of impasse driven learning.
tl(I Illore subjects should have shown iml)asses. We now beieve that
transformational analogy is actually the source of transfer between the
example line and problemi solving, and that the two subjects who had

imlpasses here shoulhl he classified as "impasse and accept." rather than
as learning a new rule. As will be seen later, there are other signs that
Casca(h's mo(lel of transformational analogy is flawed.

'T'here were 10 cases where Cascade learned a rule and the subjects
were coded as doing regular explanation. There are two possible ex-

planations of this discrepancy. Either the subjects really were doing
inil)asse-driven learning, but they showed no signs of it in the protocol,
or the subjects knew the rule already and were simply applying it here
rat her than learning it. Since the data are consistent with both explana-
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ions. Ite in I erlret at ion dlepend~s onl thle prior p~robab~ilities of possessing

SIif, ni 's ini (Iltiest Ion. AllI lit I one of the teni'iiles were not mentitoned in
I liv Itext book. so thley* are less likely to lbe iii the sub~jects* iniitial knlowl-
edge. The rule that is mentijoned in the textbhook determiines the sign of
a project ion of a vector onto a niegative axis. However. three sub~jects

showed clear ;igns of inipasses whtii this rule was first used. and three
tise(I a lbiiggy version of lhe rule that alwaYs assigned a p)osit ive sign.
Thle correct sign rule appears to be hiard to learn and/or recall from the
text for 6 of thle 9 subjects. so it was probably riot known b~y the other

suibjects eitlien. Thus. because none of the rules involved seem likely to
bo ini the subhject-.;* initial knowledge, we suspect that all 10 cases ill this
cell of T le( 5 correspond to illllasse-driven learninig events that were

1ot (lisp)la yedl bY the subjects.
*lherP were 4I cases where the subject clearly tried to exp~laini a goal

Iml failed. Onl subsequent problems. the subject wotild explicitly refer
back to thlese points in the examples and use transformational analogy.

ibsis juist what the two sulbjects whlo were coded as dloing analogical
a bd tiction do. so that is N%-i v we now believe t hat t here is no evidence
for anhalogical al bduct ionl.

There are T) cases w.here Cascade did regular explaniation anld the
subhjects; were codled as doing accepts. Of these. :35 occurredl whent Cas-
cadle was tr yng to explain a force (diagranm. According to its rules;. figiur-
iii g ont whIi chI forces exist anid( (l--e ni ning t heir direct ions a ie sut goaIs
dlopi * v eimbedded beinea th thie goal of drawing thle force diagrami. Somle
su~bjects discussed thle forces withlout ient ioning thle force diagramn. Ei-
t ii ie they were silently explaining maiiny of thle details of the force (ha-
gra iii. or t hey*% ignored thle force (diagraim anid "just kniew%- that it was
iitport ant1 to exp~laini the for-ces. We think the latter is more p~laulsible.
bui we Cann t easily*N model it wit hoti changinig the goal stnicitire eiii-
bedded iii ( 'ascade's riles or Cascade's model of accepting the example's

stt niii swit hout p~roof.
St ppinig back froiii tie( (let ails. t here are several results, froni thle

iilssin lablP 5. It is clear now that Ciascade needs several kinds of
revisions: (1I) Ainalogical abduction should be eliiniated and transfor-

niational analogy strengthened. (2) The goal structure and/or the ac-
celalice miechaitisin need to be revised in order to hiandle some subjects*
expliiat ions; of free-body diagrams. (3) The subjects showed impasse-
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like b~ehavior onl - occasions, but seeined to learn not hing from theni.
ThIiis is c11-iietl * v not alli opt ion Avit il Cascade. It sholid lhe Chianged so
I ha' oilv of its resp~onses to anl imipasse is just to accept the stuck goal
as Ite wit hout learning anl'ything.

A not her result conicerns the handling of imipasses. Cascade hadl 19
im passes where learning occurred. and of these, the subjects Showed
iti passe-like behavior onl 9. If we b~elieve the codings. thien 4,S7( of the

ubctsimpasses where lear-ning occurred were visible in protocol data.
andI tle ot her 52 X were thievictim of the usual incomipleteness oflrotocol
dlat a. lIn thle Van ehii ( 1991a ) study, of hipasses in strategy discovery.
I here \vre I learniiig eventls, of which A8 1734) were marked 1w impasse-
lik e hlavior onl t lie subject*s part. This is consistent with the imlpressionl

hlat one gets from reading the protocol-,.whichi is t hat tIke sutbject inl thle
Van [tehi ii ( 199 1 a ) st ud verbalizes much more of hier thoughits t han thle
sutbject s in thle C hi et al. ( 1989 ) stud *l. Thus. alt hough the prop~ortioni
of -silet" inlipasses is higher inl thle Present st udy. it is not inconsistenit
wit hIt lie earlier st ud s lprop~osit ion.

How many of the subjects' explanations are mnatched?

Thle pr--edl ug sect ion evalua ted t he nitcli in onme direction only. by
sf-'eittg how iinh of C ascade's behavior is inatched 1)w % subject behavior.
This sect ion eval tales how munch of thle sitbject's behavior is niat ched bY

aIscade helav~ior.
In ordler to do this. we exteriledh anl anialvsis 1w Clhi and Van Lein

If)() I). They, first coded everyv utterance ini the example studlying pro-
ocols as eit her a ph l ysics explaiiat ion, a mathematical explanationi or

otie( of severalI ot her kimid- of u tt eranices. They thlen coded each phyi\cs
explantin inhto( a ii if- thli rule t hat p~resenitedl thle gist of thle subjects
(ollt tieuit Mi a li mifotim. mtore asiyunderstood form at . We extenided
this atial~sis bY iimchidimg thle iatlienia tical explaniationis as well anid by N
corru'ct ins, whiat we felt were a fPew mnior istakes in t lip earlier anal vs is
of phYsics exlplauiat ionsq. FinallY, we determined wh-Iethier each rule ap-

pa retI li sed by t lie si b ject s was also coiit ained in (.ascales knowledge.

f 1i was usuaA ly clear what the action sides of these rules should be. but inferring the
precond(itioiis auid i le generalitY of the rules often required making some assumipt ions.
'%oniii %vi# e~w disagreed with the assumptions made in the earlier analysis.
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Tabi, 6: Subject's explanations during example studying

Explanations Categories
143 Matches Cascade (63%)
61 Outside task domain (27%)

23 Mathematical manipulations
9 Editting part a to solve part b

1 6 Extra example lines
1 3 Units or terminology
61 Total

23 Inside task domain (10%)
8 Incorrect explanations, retracted
6 Acceleration and motion
3 Abstract, partial plans
0 Global planning from Chi et al.
6 Miscellaneous, opportunistic

23 Total
227 Grand total

Soine of I his knowledge appeared explicitly as Cascade rules, while some
of it was imlplicit in Cascade's rule interpreter (e.g.. algebraic knowledge).

Of t lie 227 total explanation episodes found in the protocols. we de-
termine(d that 143 (63%) were matched by Cascade explanations, while

8-1 were not. This indicates that Cascade models a large portion of the
siijects" explanatory behavior. However, there are also many explana-
lions that ('ascade does not appear to account for. ,\e categorized these
explaiiations in order to determine whether Cascade should be expected
to inake tlieii (see Table 6).

Of the X4 explanations. 61 concerned reasoning that was outside tie
(loiain of cognition being modeled. There were four classifications:

* 2: explanations concerned mathematical inferences that Cascade
did not need to inake because it had either been given the infornia-
tion in the problem statement (e.g.. certain geometric information
was provided to it), or it did not simplify its answers.

* 9 explanations occurred exclusively on part b of one example. Part

a of I his example describes a static situation where a string is hold-
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iiig a block on aii inclined plane. Part b of the examiple asks one
to find I lie acrvelera tion of the block when the string is cut . Sib -
jee t explained part b by "editing" the explaniation of p~art a. Fobr
instance, one edliting rule was "if a force is removed from a static
case anid t here is no friction, the body will move." Cascade does
not reason a 1)011t pa rt b of the examiple in t his manner. Rat her,

h le svsteiii treats parts a and b as two distinct examples.

* Sometimes an examp~le would contain a few lines that would em-

p~hasize asp~ects of thle prob~lemn that were not germane to solving it
or would discuss limiting cases (see Figure 1. line 3). Although we
did not ask C ascade to explain these line, the subjects sonlielt nes
W0onld. and 16 of their explanations were of this type.

* 1 :3 explainations involved miscellaneous commients about thle exam-

ples that were jiilged to rep~resent knowledge outside of the task
domiaiin as formalized in C.ascade. For instance, we did not bothler
to modlel reasoning withI units,. so the statement. "In thle English

' yseml. slugs are mass aid pounds are weight .- is considered out-
side thle task doniain.

Th'le remnainming 231 expla nat iouus are all relevant to thle domain modleledl
1) ( 'ascade. so it should probabhI generate t hem. They fell into thlree

Classifica tionis.

* x exllaiiatioiis app~ear to have been generatedl tentatively' then re-
ract edl. Tme v are all incorrect st atenient s a bout physics, an(l thle

subjects seeni to have revised their explanation a short timue later.
Ani exauiuIle is. "If t lie two bodies ini an Atwood's macline have Ilie

~a I Cieler-a t on. then 1he ,v are not imoving- How the subjects
gemmematIed these conclusions is a bit of a mnuvster 'v. alt hough some are
clearly, t lie resultsq of overly' general rules. For insance, one subject
s a 1( that one cani calcuila te the tension iii a st ring by' addi ng t he
tensions mu its, parts. He- prolbabl ' generated this explanation by"
appjlyinig an overly general part-whole rule that works correctly for
quantities such as volume, mass and weight.

* 6 explanatioins concerned the relationship between motion and ac-
celeta iion. Of t hese. -4 expla nat ions st ated essent ial].% thle same
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I hing: "If a bodl v moves. theii it has a non-zero accelerat ioni. Ani-
oil er vX jdalnat ion said. "if a body'N has motion oil all axis. thl it
has accelerat ion oin that axis.*' and the last explanation said. "if
acceleration is zero. then nothing is mnoving. These all stein from
lie samne incorrect concep~tioni of acceleration as speed. which is

very conmmton and hard to remove ( Reif, 19P,7). Cascade should
also be equipped withI t his miisconcept ion. Even though these new
rules wouldl alter Cascade's model of tile subjects' explanation of
exaniples. we dto not expect that they would change Cascade's be-
havior oil later problemis. This is because the p~rob~lems all deal with
acceleration all(l (10 not mention conicep~ts like velocity or "motionl.

* 3 explanmations articulated anl abstract. p~artial plan for solving thle

p~rob~lem. [For instance, one explanation said -'Tile weight of the
b~lock in tlie stinhg examplle canl be computed by figurinig out thle

tenisioni inl the strings.- This rule represents the top level of aii
a bst ract plan for determining thle weight of the block. Cascade
(loes not dto hierarchical planning. but this rule provides evidenice
hat p)erhiaps it should. Ini particular. we would probal 'y find( miore

evidnce for planning inl the lproblelin solving p~rot ocols. Plan ning
did not hiave mnch of a chance to emerge during example st udy' ing
lhecaii-silbjects are mostly' led by tile hand through the example

sohut ions, so there is nio rea n ieed to lplaii.

* ; explaniationis defy classification, so thle.% are siniplv listed belowv

1. Tile body is thle thing t liat tilie forces are acting onl.

2. e-nqiou is iimiport an bi eca use it t ranismit s thle force betw~een

liv blocks.

:1. The acceleration ill all AXtwoor]*s machine is caused 1) gravit..

-1. If thle right miass is greater than t lip left mass ill anl Atwood's
muachtine. thlen the muachinie will accelerate downwa rd.

5. Ant upward force caii act against gravity to keep a body from
falling dlown.

6i. \lost forces are gravit ational.
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All 6i exp~lanlations are true statements. However, thie. are not
rel~eva iii Io thli goal of solving thle prIoblemn. whiich is why Cascade
dd it n ake t hemn.

This antal * sis indijcates that of the 227 explaniations uttteredl by subl-
jo-cls. 1 13 ( fi3Ai ) were matched 1) '(viascade's explanations. 61 ( 27A. ) were
nit t side tIme task domain being modleledl. and 2:3 ( 10'7,) are explanations
I hat ( 'ascade- sltoidd m(ta ke btit does not.

C ascadle emblodies a hypothesis about explanation, which is that ex-

planat ion of soluttion lines inl physics examplles consists of rederiving
themt. This is a kind of local exp~lanation. inl that Cascade focuses only
ott f lip ciirreit solti on line. It does, not Stel) back and t ry to see a
9gol im tern t hatI spanus all the solution lilies inl anl example. This miay'
ceiti somnewhiat untisual, as ot her nmodels of example explaining (e.g..
Va ii Leht . 1 99): Reimia iti. inl press) emphasize global explantat ion. How-
everi. froiti oilme poin~t of view, there is lit tie point inl global expla nat ion of

;tYsics exainlles. Biecause later solution linies use results, from earlier so-
lit:ion lines. dloinig local expla nat ion of tilie later lines ties them toget her
wit It lie ea rlier Iiies. *yield intg ati overall colieremt st ructuitre. Front anl-

ot lmvi pointt of vie'v. t here is great lhelefit inl global exp~lanat ion, beca use

it t mii, its ottIhatI all thle exam ples have a similar chronological st ruct lire:
()it(, first chionses b)odies. then draws a diagram showing all tilie forces
atc Iilu ont Ilie bodies, chooses roordliia to axes. inist anmtiat es Newt ott's law
a bit z pitch a xis. and solves hoi resulting s * stetn of equations. The text -
boo~k even mient ions t his p~rocedu tre. One might expect tilie subjects to
look for much a global. chronological st ructutre. perhaps by first locally'
,-x I)~ I aili tu all Ilie solut ion lilies, then reflecting onl tilie whole solution to

rpq if hli overall s ruict tire mtade sense. However. tlie subjects p~rodulcedl

()1. l'1 0 gh ba I oxlla alionl st atemient s. Seeing tilie overall. chronological

it Cv'iii ill so01ili bS does tnot appear to be a mta jor concern for these sub-
pel ~rhaps becauise I lip logical structure suiffices to make lines cohiere.

I hii is conisistol eatt it I Sweller\- work, which has shown t hat chronolog-
ica;i pat t erits onmibedded9( inl solut ions are oft en overlooked when sub .jocts5
aim, fi cus1,sed oil1) ba iliing a goal ( Sweller k Levinte. 198S2).

Aitot hter h 'ypothesis ab~out explanation embodied ill Cascade is that all
itiferetices are ultimately* directed towards the top level goal of explainuing
I to currenit solution lite. Cascade uses a backwards chaining theorem
pmoe. 'kl~ Itiv tani; t hat it starts with thme top level goal. chooses and
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appilieq a ruile, anid I lhen focuses onl the first of the several subgoals crc-
Il ed 1)% IIIv riule's applicatioln. Whlen ll subgoals have beenl ac ievd it

e.\ectiiies t lie ritle. which fitiall v drawvs a conclusion. This mneanls that all
inlference- are dlone ini ordler to satisfy some goal. and that goal is ulti-
jialt Oa ~ilioal of the top) level goal. This makes Cascade a narrowly
I' tivd' l. mhd 01ical I xplla ier. It colId be that p~eople are more oiiior-
niiiislic anid inake observations (i.e.. drawing conclusions) wvhenever
fiey% not ice t hat thiey call be drawnt. In the extreme, they might (10 for-

warid cliaiiiing. drawing all possible conclusions al)outr a problem while
pa*%iiig no at tent ion what soever to t he solution lines or the overall goal
oif flie problemti. liIowever. only, 6 of the 227 expla nat ions appear to he
oppor 1t un1st ic. ill t ha t t heY wvere not itat ched bY Cascade's goal-directed
inle ei( s.

How much of Cascade's problemn solving is matched?

W#, irn131 now to collsiderilig p~rolem solving behaviors. Thle cojin-
paisin C1 e en(ascadle anid t he su bject s is nmadle difficult b)'y two fac-
t'. First, the lprotocols are huge. There are aplproximiatel.N 270 ae

i4 piob1dcii m iving lprot ocol. as compllaredl to 300 pages of the e'xamiple

oldig prot ocol . Second. problemi solving is less const ra inedl tha n ex-
mi il oIitlidviig. Rederivitig a line inl a sol ut ion takes at thle very most
oilk I a ',\\ i u e wherepas solving a probleml call take almost ali hour.
Sil -cIs seldoimi get badly lost while rederiving a solution line. wvhereas
whlen solvinig a p)roblemll. qlil)ject s often wand~er (down several umiproduc-

i\( p a)l lis before finding, a solution or giving up. Getting C'ascade to
follo\\ thle subljects onl a long doomed searchl path canl be difficult.

An imilport anlt methIodological problemi is findi~ing a fair- way' to evaluate
Si, fit 4f a .simi iltion anud a protocol. Suppose one evalua tedl the fit

b. oitit h~ Ile act lmis t aken by thle sinmulat ion that are matchied by
su 1bJec I act ionis. and dividing 1) thle total numbiiier of actions taken by
thue -;iiiuiuatioll1. It oftenl ha ppenis that thle act ions of tie, siniuhila t joll and~
i114' smIbjpct disagree at somei point. This ofteni causes themi to (liverge
and follow separiate pathls for a while, perhaps eveti a long whlile. The
longer the divergent paths. tile worse the fit, even though the blame
is (ille to one false move earlier inl all cases. Titus. simp~ly comparing
iua ichin uit) mlismnatIcling act iomns is unilluininalting. for it confounds thle
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(j1talit or I hie simiutlaIlion wit I, properties of thle search space. unamiely, thle
ligthIs of cert aiti patlhs.

Our approach is to equip Cascade wit Ii a variety of pa ranieters. which
we call "niudges.- whose main purpose is to nudge Cascade b)ack ont o thle

sill)jeci s searcli pal It whenever it would otherwise wandler off. The fit
bet-w-eni thle simuiilationm andl the subject's protocol is measured by1 count-

ip, thle ii mer of timues the simulation had to be nudged. Ali addlitilonal
heinefii of nudginzg for measuring fit is t hat each nludge represents a p~iece

of unexplained cognition. By taking a census of the nudges. one call

rank t ,y1 es of unniodeled cognition and discover which ones are affecting

p)roblemi solving behavior thle most. Here are tile types of nudges used:

* Whien (Cascade solves a prolblemu. it normnally' tries t ransformiatijonal

analogy oly after it tries regular domnain knowledge. However.
,Ollie subljects alpparent l 'jv refer to use transformational analogY in

54)11W cases even when their behavior onl earlier cases denmonst rate.s
I hat I li hey. have t lie appropriate (domiain knowltedgo and could pot cii-

I iallY Ilse it here. III ordler to force Cascade to follow tilie subjects.

propiosit ions of filie forum trafo-only(G) were placedl inifilie prol)-
Hit \ descripti onl whenever G is a goal t hat tilie su bject p~referred to
achliiee via t ranisformiationial anlalog.. We call such caspes of I raits-
formmat ioinal analogy "for~ced.

* 1.\ de~fautlt . thle top-level goals of a p~roblemt require idelemtif'vimig a
body aind d rawinzg a free- body diagramn before fimndinig tilie souight

(pintit ie,. If tilie subject did not draw a free-bod 'y diagram. we

eliiiinatIed these goals froii thle statement of tilie p~rolIem.

0 011 rare occasionls, sli ject s ca me ii1 w ~ithI a nalogical miappinug- t ha

( acads, couild not generate. lin such case-. we simiply' gave ( 'ascade
lie suibject*- miapplinig or modified the p~roblemi represent at ions so

I hat t lie sii bject's miappings could he generated.

* Sit bject s did not alw\ay' s us,- I lie buggy F ='m rule. which lets F he
anl ind~ividuial force instead of thle net force. wlieni it was applicable
(i.e.. we could not figure out exactly what preconditions the sub-
jects had for this rule). Perhaps they right-ly believed that it wa~s

(llygemieral. and thus they would only use it as a last resort. At
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all 'v rate. we conttrolled its, usage 1) N enterig ignore (F=ma-wrong)
hio o I liv esrp C5 ioi t s of some p~rob~lems but t not others.

lit order to evaluate Ciascade's ability to model a given subject. nudges
were eiit ered 1) , trial aid~ error. Cascade's behavior then wvas compared
I() t lie si) ')fc sv classify' ing each of tilie goals iii its trace ac(ordiiig t o
hiow I le goal was achieved. Four classifications wvere used:

" R~eguilar solvinig: Cascade used one of the domaini rules.

* Imipasse withI learning: C'ascade reachied an impasse, successfully
applliedl EBL( . and( Iearned a niew domain rule.

" l'ranisforniationtal anialogy: Cascade could achieve the goal wyit h a
(loiiaiii rule, so it uised t raiisformiat ionial anialogy.

" Forcedl iranisformationial anialogy: WVe forced Cascade to use trajis-
(urinal jonal anialogy even though it could have used a dloniain rule
to achieve thle goal.

Next. each of these goals was classified accordinig to how the subject
ajp.'ied 1to achieve it. Foutr classifications wvere usedl here as well:

" Tra iformiit nia aiia logy. If tile subhject referred to anl examinple
adi co~pl p~arts of it over. tilie goal wvas classified as achievped by
1 ia ii 4 oriat ioiial aniahgv.

* imipa,;se wit h learninig. If tilie subject paused. complainied abot
lie gol r li somle ot hler wa ' showed signis of beig stutck. huit the

,mii~ jduid( ii ot refer to anl examiplle to achieve tilie goal. thliu we
cla-si tied lie goalI as beingp resolved bY EIIL(

* llliimi v all mlv 1i e i . Oil a few\k impi asses. tilie subject juist gave up j

w ithlint seeiilig to resolve tlip impaqs or learni al uv newi rules. Giv-
iie ipj i- iiot onep of thle opt ioiis available to C ascade for hanldiiig

all Impasse. aIt houigh it should he.

* Regular solviiig: If thle subject solved thle goal withbout complain-
ing. referriiig to ani example or pausing for inordinate amiounts of
tiiii. themvi we classified thle subject as achieving the goal via regular

prohiem sokl ig.
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Tabhh. 7: hlow inaitv (Cascade goals are achieved tile saine wvaY by sub)-
Ject s?

Cascade ______Subleets _____ ____

Regular Translorm. Impasse with kpeas and
______s____ olving v learning iv Totals

Regular solving 3653 47 0 0 3700
Translon. anlogy 16 176 0 4 196
Forced trans.analogy 0 35 0 0 35
ipasse with learning 7. 0 0 0 I6

ITotaSI 3676 2581 9 4. 3947

Givei these classifications. the results for all ntile subjects appear- in
Table 7. In mtost cases, (:3653 + 176 + 9 = 3R3S or 97(), thle Subjects
hanl(ed goals in thle same wa 'y that Cascade did. which was extreimelY
unlikely to occur by chlance (1 << .001. (Au-squared test.). Let us ex-
andite each of t he ot her cells to see how serious tile mismatching cases
a re.

There wvere 147 cases where the subject-. did transformational analogy
amd C ascadle did not. All these were due to the simplicity of C'ascade's
itiodel of transformational analogy. One subject often used vector equa-
Itions as if I lie 'v were Scalar equations. and applied themi in creative, albeit
incorrect waYs t hat (ascade could not mocdel. XNe let Cascade solve t hose
lproIbleins ini its normnal way and counted all 42 goals as, cases where thle
sidmbjrct did tranusforimational analogy and (Cascade did not. The other 5
cases occiilrredl when a subject could not recall some trigonometry rules.
so sihe inixedl transformnational analogy with regular problem solving ini
a comim1plex wa v that Cascade could not ioolel. These 47 cases indicate
t hat Cascade's niodlel of transformiational analogy needs improvement.

There were 16 cases where Cascade did transformational anialogy all(l
iem subjvct seuttol to (ho regular problem solving. Transformat ionmal

amalozies occiir when (Cascade is mnissing tile knowledge to (10 regular
prolblemt solving. so there are two possible explanations for each case:
Either the subjiect knew thle rules that Cascade lacked. or the subject
act uallv did have anl implasse and resolved it with transformational anial-
ogy. buit ite- (ly idn't refer overtly' to the examplle because they could
rememiber thle line that they needed, and thus were not coded as, per-
forming transformational analogy. Of the 16 cases, 8 seemed to be cases
of covert trantsformational analogy because they involve accessing the
free-Imbod(iagratm. wvhich is much easier to renmember than the equa-
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011S. TiWO More Cases Semne( to he covert transforiiiational analogy,
becaiuso 1t li su lhject haid alIreadY referred to the examinple's eqiia t oii 3
times earilier, a mid probablI had comnmit ted it to mentory' . Five cases

seemed to be catised 1), thle subject having a buggy rule about negative
signs I hat ( ascade lacked. b)ut (Cascade was able to get thle samne effect
wilt ransformnatioinal analogies. The last case is similar to thle five just
dijsciissedl. Ibut withI a different rule. Thus, of the 16 cases. 10 seemi to
he (overt imlpasses correctly 'Ivredicted by* Cascade. and 6 seemi t~o re-
suilt froim the suibJect having, initial knowledge that is not in Cascade's
st anidardl iit iial knowledge base.

lIt -1 cases. hle subjects reached impasses and gave up. Since Cascade
(iirr-1itl 'IN ca iimot give Up at impasses. these cases, were app1roximnat ed with

ira iuforiiat ioial antalogy. Hlowever. ('ascade (lid succeedl in lpredlicting
thle locat ion (of thle impasses.

Thecre were 3r) cases of forced transformational analogy. Two subjects
(9 of :35 cases) alway' s copied thle free-body diagrams and never generated
lhin oin their owvn. -so thlese subjects applarently were lacking knowledge

ahmit draw intg free- body (diagramIs. lIn ret rosp~ect . these subjects should
hav~e been miodeled 1bY hav~ing t heir initial knowledge adjusted to renmove
the rules about drawving free-body'N diagrams. The other 2(; cases, occurred
%vitII i suiibjec ts w Ihio clIfa rlI'v had thle requisite rules. buit chose to (In t rans-
l'ormai onal anialogy inst cad. Of these 26i cases. 21 involved copying a
frs,"'- bo , % l d iagramii rathleu t hani reasoning it on t fromt lplysics prin cip~les
an I hiv ot lier 5 in volved copy' ing trigononiet rv fuinct ions, rat her t hani fig-
i i., owt w~hellier lie funtiion should be sihe. cosine or tanugent.- and

w I latI thle anugle shouild he. It is cert aiil 'v easier to use t ransforniatioinal
analogy for lhese pairticular cases. amid aIppareiitlI the subjects felt it wvas
,;;If(, to do so, evenl though tranisfornmat ional a nalogy is fallible.

There wevre 7 cases w here Cascade did ipasse-driven lea rning and
lie stii b'ect s were codled as doiing regular lproleili solving beca use Ilhey%

showmed mio signs of iniplasses. lit genieral. there are two hpossib~le expla-
nations for such cases. Eit her thle su bject act ual! *v did im asse-(lriven
Ivlea iiig hii t failed to -how anl signs of it inl t heir protocol. or they
already, had the rule that Cascade was missing so they' just applied it

insteadl of leariiig it. WNe examined each of the 7 cases to try amid deter-
mimie1 which Pxplaiiat ion was most plausible for each. lin sonme problenis

wi1hI frict i li them. C ascade must learn four rules about friction forces.
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One subject shiowedl 110 signs of all impasse at anl% of these locat ions, so
we suispect I hat she alread *v id ~ersto00( friction forces. Aniot her sublject
showed signts of ani impasse at three of these places, but not at the fourth:
it is likelY I hat t his fourth occasion was a covert implasse. Similarly*,v one

prolemi~ re(piiredl learnig four rules about pressuire forces. A subject
',Iio%%(I signs of ani impasse onl onlY two of the four occasions. so it is
likelY t hat the other two occasions are silent imp~asses. Thus. of thle 7
cases Where C ascade does impasse-driven learning and the subjects ap-

pear not to. :3 semi to be silent cases of imipasse-driven learning and 4
seemi to be cases where tile subject already knew the rules that Cascade
lea rned.

Fromt t his exanminat ion of the mismatching cases. it seemis that Cas-
cade wonidd need three augment ations in ordler to handle all the dat a. (1 )
'1ra nsformiat jonal analogy needs to be made more powerful so t hat it canl
lmodel t he miore creative (albeit incorrect ) usages exhibited by subjects.
2) The model should he free to choose transformational analogy instead

of pei arobi~llemi solving whein it estimates t hat t ransformnat ional anal-
ogv would be easier or niore reliable than regular problem solving. (3)
Whleni ( ascade cannot resolve anl impasse, it should be allowed to give
up1. All lhe Other cases, of mismatching appear to be covert versions
of' th li pfictedl events, or cases wvhere rules should have been removedl
from I Iev inital knowledgebae

In shortl. it appearis that almost everv 'yhing that Cascade does is
mm at liE'l h Y su hject beha vior . Time next sect ion analyzes thle subjects'

bhla fior in ordler to see how much of it is matched by Ciascade.

How much of the subjects' problem solving behavior is
matched?

Ini order to q iant if ' how nmuchm of thle su bjects thi Jnking d urin~g pro))-
lem111 qolvingi colm 1( be si iimlate 1) e by Cascade, we adopt ed thle samin uniit
of anl lsis that was used in thle precedling analyses bY converting tile

111i Is* protmlocols inmt o Cascade- sizedl goals. As anl illust rat ion of t his
analvsi s. Appendix I shows a protocol and our encodiiig of it. Followinug
the tradition of Newell and Simon (197-2), thle protocol appears in the
left colunn and tile encoding appears in the right column.

This kind of analysis is quite time consuming, so we could not do it
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for all 252 protocols. Thus. we selected -4 protocols that we felt were
V pica I. Two wore front Good solvers. anl two were froiii Poor- solve-rs.

Each of thlese pair." consisted of one protocol t hat was mostl.y tranisfor-

mat ionia analogy aind one that was mocst 'lv regular rule-basedl reasoniing.
(Thle pro itocol inl Appendix I is a Pool- solver who is doing inostl lvN t ratis-

ii llat oil anmalogy. ) ( learlv. this is too smnall. a sample to dIraw~ st lng
nlferenlces . 1)11 oiur [point ill this sect ion is Just to get a rough ideca of the

Infereiices occutr whenever a goal is redluced to subgoals. or a goal
is aclivived. Thus, by literally, reading between tihe lines, one caii tell
fioi ii thle eiicodl p lrot ocols wvhat thle subjects' inferences were. Ili thle

foil iiir P tocols. hlere were 151 Inferences. exclutding trivial arithmet ic anid
altgebraic ones. W\e examininedl each. andl determinedl that C ascadle couldl
do all buit 15 of t hem. That is. if we were to siinulat e these p~rot ocols
wit It C ascade. we woild( need 135 new rules andl w~ouIld lroba lIly havye to
nudge it 15 times inl order to get it to apply' these rules. Thus. it appears
hat (Cascade Ic(al ii iiodel a bouit 90'/' of thle subject 's inferences (luring

problemcii solving.7
Ini ordvir toI gv a pi alit at ivo sense of thle behavior that Cascade coulld

1140 it mdilat %.p de(Iivided the Inferences jnt 0 ones that seemed ou tside
of' lhe hnede~ task doma in of C ascade and those that C ascadle rca llY
shoii 1( a ii modfeled. Those t ha t are out side thle task dlomaiin are:

* Ili 2 iniifremices. thli siibjects chocked t heir wvork by plugging t heir
a n~s%%oes back inito eipnat ions and seeing if tilie equia tions balanicedl.

* Ili 2 in fvreiices. the subjects struggled to find thle appropriate i lilt s
futi their calculations".

" Iii 2 infurenices. Ime( subject had difficult ,v understanding the dia-
g'rali t hat accoiuipliieil thle prob~lemi statement. Inl lart iciilar. it
was difficiflt to (lecidle whether a cprt aii line stood for a stiring or
iii it

[lie in fere nrs t hat wvere iiiside te ie tendepl domain were:

7Frau kt. tis esmiuuuate qeetlis high to u%. If we act ualIlv tried to add tile requlisite
I' m rueq to Casqcade art !Rimutlate thes;e protocols, we would probablyv find t hat tile
'0' -ravj- was rto~er to 61)'7 or 70%.



* 4 inferences were coded for a case where the subject decided lie
needeld to uinderstandl freefall better, and wvent off to readl thle rele-
%-;till page oft he text boo0k. then decided that his (incorrect) solutioii
it) filhe problem was right anywa.

* 2 inferences were code~d for a case where the subject dlecidled to
convert a vert ical acceleration to one p~arallel to anl inclined p~lane.
bit apparentl , did not realize that projection could be applied
directlY, so hie --converted- it to a force using F = ma p)rojectedl
tilie force. t hen converted it back.

* 2 in ferenices involved a subject who let g = -9.8R for no applarent
reasoni. This could have been all unintentional error. except that

life sit Iject not iced lat er thlat g was negat ive and did not correct it.

Thie secotnd inference occurredl later, when she dropped a negative
ign "-for fi - as shte p~ut it. t hus effectively canceling her earlier

error and obtaining a correct answer.

9 1 itnference was coded for a subject who invented something hie
ca llvd a *'louidde force'* that icluded h)01 i gravitational and fric-
t inial itiflitenlces.

AhI liotigli I ln'se lists would clearly' be much longer if moire p~rotocols had
been a na lvzed . and thle smnall sample makes any statistical inferences
iiiSOUitild. taking the dlata at face value indicates that about a third of tile
till itia t c'ited bhiliior is out side the task (domaini. and the ot her two thirds
is b~ehavior thlat ( 'ascade should model. Moreover, most of the behavior
hat ('a-cadle qhould mnodel is incorrect reasoning of a wide variety' of

tYpes . More research is needled before we call conclude anything about

liev soii cfs (if thlies incorrect inferences.

Control choices

rlic' jprfr(diimg a nal vsps as,;sssd what was done, but ignoredl the order
in w hich act iow took lplacfP. This sect ion conicerns the overall control
st ruct mir as well a-s thle local choices of which rule to try first in achieving
a goal. Both these factors control the order in which inferences take
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Cascade uses a backwards chaining control structure. A goal is pro-
cPSsd I) seletn a nthIlen posting a nY subgoals reqn ireI by t hat
title. Aft er lie sn bgoals have been achieved. the rule's conclusion is as-
seried. ]TInt, a goal should show up twice in a protocol: when it is
first post ed anid( whenl it is compllet ed. lin our- protocols. subjects did not
itsua lix talk a bout t heir goals whetii thley\ post ed t hemi (see Appendix I ).
althbough thex, oft en mient ioned the conclusion.-, that were mnade whenl a
goal was achieved. This could he taken as a sign that they were not
following a backchaining conitrol structure. However, a control structure
also rest ricts the order in which actions can take place. For instance. if
A and B are subgoals of C'. and D is not, then the order A.D.B cannot
occuri. Tlms itste ordlering in which goals are achieved is diagnostic of
lie( cont rol st ruct ure.

As part of the anal ,ysis in the p~receding section. we fit a backwards
chia iingii goal st ructuri e to thle subjects* behavior in the four protocols
aiial , zed. Of the app)roxiniatelY 1.51 goals. there were three cases where
backwardls chiaiining would not fit. lin two, the subject lperformiedl goals

Iriniatuirely, (i.e.. t lie A .D .1 case just nientioned ). During t lie t hird case.
lhe sit bject explicit IlvN decidled which of two conjunctive (sibling) goals to

do first . This kind of search cotrol occurs in some mepans-ends aitahvsis
probleim solvers (e.g.. Prodigy: MIiiitoin et al.. 1989) but not in (iascaLe
lit shlort . tlie av~ailabIle evidence iiidica tes. that Cascade's control 51 ructui
is Imli a bad firist a pproxi ilia t ion to thle subjects' overall appIroach.

T[le oilv search control decision made by Cascade is which rule to
aily givel that mlore than one mnatches the currenit goal. T'vo factors
(le litie ( ascadel-s choice of rule. If analogical search control caii find
a ii old.goal] t hat is isoniorpji c to thle current goal. then til old1( goal's
title is chosen. If anialogical search control (does not apply' . Cascade selects
ritlles it] thle orderl inl which t hey appear lin a file. This file is set up l1 t
genierate e-flicietit behavior in general. aiid is not tuned for any.% particular
sIt11 bJrt

The first aiialvsiq Involve-s placing all goals in one of two classes: Ei-
Owlr lhe firs-t rill Ineeted for achieving this goal ~ar itititatelY rejected

and( ainothler rule was used in its place in thle final solution, or the first
rule selectedl was used in the final solution. This categorization was Car-
ried out for all Cascade goals and for all subject goals corresponding to

Ca~cmde goals. Of lte 3461 Cases where Cascade picked lte correct rule
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firs, th suject failed to pick the correct rule firt I oIi IN (23
ca .TIim-. ( 'a-cadl predicted thle Sulbject 's choicfe of rule Ii almiost all

9 )7. 7 'l ) ca se S.
InI ordler to (let ermine how much of this success is due to analogical

search control, we sp)lit tho 3461 case-, according to whether Cascade s
chioice was det ermied 1) anialogical search control. Cascade selected
tI le correct rule first w'ithou~t the involvement of analogical search control
2702 times. In 62 of these cases, the subjects did not choose the correct
rule first. Thuis Cascade's dlefault rule ordering predicted the subject-,'
rule choices 97.7%'X of the time. Cascade picked the correct rule first with
it,; atilogical search cottrol mechanism 7-59 t ines. and agreeing withI thle
sub ;e1 's choice in all but 19 cases, for a success rate of 91.5(7.

IltiallY. this seemed a disturbing result. because it applearedl t hat
antalogical search control gives the niodel ito p~redictive accuracy. over

lhe (lefa tilt rule ordering. This raises the question of whether Cascade
would be better off withIout analogical search control. If it alway' s used
its dlefautlt rutle choice, would its overall p~redlictionm accuracy' rise? RatI her
t ian simunlate all 9 sub~jects with analogical search control turned off. we

est iiiated what thle fit would be. We gave C ascade all the knowledge
mecesa rY to explaini antd solve the examples and( p~roblenms (so no ini-
passes" wo ild be generatedl) a mid rani it onl all the examples anid problems.
While runmning. it kept t rack of how man 'vtimtes, it used analogical search
con t tol to choose a rule. anid how nian 'v t jutes t hat choice corresponded
to t lie defautlt rule choice. We fountd that analogical search control led to
a choice (differenit from (le defautlt rule a pproxirta tel 'v 12W, of thle titte.
This itmlplies that if Cascade had been run with search control t urned
off'. t lien a bout 89) ( 12' of t lie 7-40) cases where analogical search conitrol
pre~dicted rthe subjects' rule choice would now become cases- where its
pied dionims fail. InI add~it ion. hand analysis of t lie 19) cases where analog-
icalI sea rchi control failted to predict thle subject's choices, indicates t hat
ondY 2 cases would be successfully predicted if analogical search control
%%vrc 11n rued( off. Thus, if Cjascade had oily its default search control, it
Would iiijredict 106 cases that it successfully* predicted wit Ii anmalogical
search contirol turnied on. so its accuracy'N would dIrolp to 95.6(7t as opposed
to 97.7V,' withI ainalogical search control enabled. Thus, analogical search
cottrol does help.

Ili ordler to fiirt her understand why analogical search control failed
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to p~re-dict 1V) rule choices, each was anal ,yzed. All were generated 1) y 2
S~iI)ge~ S 50( S~(Ie analgialsearch control preolicted I lie rule choices

for 7 oft the sit ) jectIs wit Ih 100(7( a ccuracy. Moreover, it turns out tha I in

I I of thet( 19 cases. thle first inference mnade by the subject could not be

mled~~l~ 1) * any C ascadle rule. Such cases, indicate an inaccurate model of

I liv sti Ifect s knowledge, rat her thlani an inaccurate model of the sub~ject's

sear ich conitrol.

In stiniiar., onr initial result appeared to suggest that analogical

search control p~rovidled no closer match between C'ascades problemi solv-

ing behavior and the subjects' thani Cascade's normal problem solving
did. However. for 7 of the 9 subjects. C'ascade provides a clear improve-

ment in inatIchitig the subjects, when analogical search control is used.

For thle oilier two subjects, the failure to match appears to arise from

umiissinzg prior knowledge rat hier than a defect ini the learning inechmazisi.

Moreover. if anzalogical search control is turnted off, ('ascade's predictionm

accuiracy would drop.

Discussion of the fit between Cascade and individual sub-

jects

IPY e" ern' two piirploses ini fitting C ascade to the indlividual sub-

jct s. The first was to find out what the subjects were doing. and the

S'oilwas to finid out how well C-ascade could model that. WXe discuss

hese objectives together. first looking at example-studying behavior.

hen pro(blei m solvting behavior.

The two major processes during exam jple-stud%*Ing were explaniat ion

of a linte a nd accept ance of a line or a part of a line wit hout explaiing it.

( asl ado", m1odel of self-expla hat ion is to rPelerive th linhe via ordiiar Nv

dveduction. C ascades- backwards chainzing comntrol structutre ensures that
0111Y~ Infii cve releva it to th4 liop0 goal are made. This sufficed to mmodlel

WV4'' of thle siibjects* 227 explantions (see Table 6i). ('ascade's m1odel of
accepti itip a line was siump ')ly to prune a wvhole su bt ree of ant exlhanat ion by

acept inig a goal as achieved without tr iing to achieve it. This sufficed to

account for 92' of the subjects' 422 cases of acceptance (see Table 5);
actutally' , the lack of fit may be due to the goal structure imlplicit in

C'ascade's rules, rather than the acceptance mechanism per se. Overall,
aqfaqle accounts for about 7r.57( of thie subjects' behavior during example

42



st id ving. i

ThO SVIF-explatna lins t hat Cascade does not modvl are mostl 'v ( 73X
conIcrnedI withI cognitive skills t hat we are not intecrested in modeling.
such as algebraic e(ftiation solving. That left only. 23 explanations that
C ascadIe reall , shouIld have mnodeledl. These fell into two groups: inl-
correct explanat ions (14 cases) and more general commnent s (9 cases)
inci(idiii i a bstrac(1 pa rtial soluition Ipla ns and observations such as. "The
teiisioii is imiport ant because it transmits force between the blocks of
anl At wood's mnachine.- The first group indicates that Cascade nieedhs
more lbiiggv rules, than it current ly has. In particular. it needs to muodel
miisconicep)tions about acceleration and mot ion. The second group indi-
cated t hat lite subjects have aii abihit v that Cascade lacks. They canl
ota 11( back fioni thle dletails and ab~st ract ant overall view of either thle
solition (i.e.. tlite 'vsee a ii a bstruact plan or chronological pattern in thle

inferences) or t lie systemn (i.e.. they foruin a nment al miodel of the lte-
cli ical deie. Atog ths are certai * nteresting and import ant
tv1)es of cognition, they appeared surprisingly rarely in this study (olyl

o) f 227 cases, or- -4%). When the Cascade research began. we expected
phvi recowdition to ble th li ost imp~ortant kind of self-explanationl. We
IiavP sice learned that it occurs rarelyv anid iayv have tittle influlence
oil sutbsequient lprolblenl solvinig. j Overall. it is goodl news t hat only' 2:3

I I V ,) of t lie 166 interest ing. task-domnain relevanit explanat ionis uttIered
by sit biect s re(liire extensions to Cascade in order to model t hemi. Evenm
ill its, 1 breqfoii fori. C ascadle successfully miodels thle bulk of tlite subjects*
selr-expilaa ioits.

mili, to% viaxe figii I for example st udv* ing was calculated as follows: Table 6 shows
that1 f;V", of I lie subljects, relf-exptanatious are modeled bY Cascade. Table S shows
ilhat 1 of the acce'ptances are modeled by Cascade. However, these tables use dlif-
ffo'It-1 1111t v Flom Table I. we call esi imat e that about 4it!1 of thle sn bjects< behavior
wa~s a(( p1 a ii'. so we (all use thiat figiu re to form a wveighted average of the two cov-

,rage'. a t thiis cahlvate that about 757f of tile stibjects' example stt udving behavior
is 111i1iched byN ( 'ascade.

I\tt tuoliglu it seems point less wvith orNy 3 ca-ses of abstract planning inl the example
%t id. itu protocols we colild AnlalYze the problemn solving protocols to see if thlese

901tjects' riduchoices duiriuig he relevant sections oft their protocol are bet ter explained
by tefli abstract plans they found dluring example studying than by lte existing search
control mnechanisms of Cascade- Because analogical search control probably makes the
qmiie predictions about rule choices as an abstract plan. we doubt that this analysis
wvouliu Yijeld unlequlivocal results.
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The two most common prolbleiii solving processes were backwards
clia ili upr Ic- b-ased in forevice alid Ira usforia t iona I anialogy. We were

sutrprrisedl 1) 1 vhle prevalence of' t ratnsforni at jonah analogy during prob~lemn
sol vil all hog twas cranYdein p~art to the fact that 12 of thle 21
problems in the st mdv wrisoniorphic (or nearlyN so) to one of the thlree

examiiples (i.e.. t here was a set of 'st rinmg- problems. "incline" prolenis.
and i "p iillev" problleims ) .Althbough ol.% arouind (i T of'subjects* problem
solving in volved tramsformational analogy (see Ta ble 7). it oftenl had a
prof'ound affect onl the direction of the subjects* search. Cascade has a
qimiille imodel of t ransforina t inal anialogy. butt it was not p~owerful enlough
o hanmd le all thle cases. SubI)ject,; somet ines find a nalogical inaJppings,

tHim ( ascade ca iinot . The *vsonmet imes inix t ra nsformiatijonal and regular

prolblemi solving (41 cases). They' sometimes prefer to use traisforina-
tonall anahigv even when they' do not have to use it (:35 cases). Man , of
I heme probleinat ic cases occur when sub~jects need to drawv a free-body'1 di-

agramii and refer to thle example's free-bodY diagram for help. They. ma
heP uiii well- homied skills for visual analogizing. This would explaini why
Casciidl*-s rammforiiat ioiial analogy. which is oriented towards analogical

I ra lisler of e~liat ions. is so inconillele.
Oii I lie w hole, it a ppears that most of thle exa inpleCstudying andl

pl),dem olving behavior call be explained as (led uct ion. sinmple accel)-
I oc f examiiple stateeniits. anmd t ra nsformiationial ainalogy. Al' bough

I e-se tIi re procv(sses cover oiil 'v 753 1 of the exa mple st udvi ii g beltavior
amii) 60P-90";, of thle problemi ol~m belha vior. thle behavior t he ' do not
cover ilost lv Involves mathenmat ical manipulations aind other types of
covmiit ion t hat ame outside thet+ donmainl of st Il .

Wvwere tuirp~risedl to Finid that thle overall control structure andl local
coniitrol choices were also modeled rat her accu rat ely by v ) vascade (see thle

ceeI mgsct ionl . I-0owever. we did not strmess t his aspect of (Cascadle ei-
I her fii ringp It dtevelopmeilt nor during its evaluation. so timr is, probablY
1110 l~oiim for Inmprovemenmt in bot h areas.

GENERAL DISCUSSION

We have completed three steps of a four-step research program. The
first step was to find a coniputationahlv sufficient account for the knowl-
$d'I au,uii ;1 tIIoll I hat occulr(l in Ithle (h eI] t al.- st udy. The major tecmni-
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cal hulrdle was finding a way to const rain search during po~e ovn
so that un pa-ses would occur at the right place-,. This was achieved
1) , ad ding analogical search control. a forizi of symbol-level learning.
T Ihere was no wa ' to tell in advance of running (ascade whether ana-
lopical searcli conitrol was sufficient . Fort unatel.N, it was, and Ciascade
Was able to learin all the rules, t hat it needed to learn. Moreover, the
pio'bl('ii of getig impi- to occur in the right p~laces is faced by* all
iinasse-(lriven machine learning systems. so this result is relevant to
miany machine learning systems. A minor hurdle was finding a way to
ransfer knowledge from thle knot-is-a-body' examplle line to problem ,;ol%--

in, Art er t 'rvin g several met hods, e discovered a niew% machine learning
leii hiqiie. whliclh we called anmalogical abduct ion.

Thel# second step) in thle research program was to dlemonst rate t hat
ascadle could explain the main findinigs of the (hi et al. studyi%. A s a

Model of Ithe self-explantation effect. Cascade was qualitatively' adequate.
1t could self-expiln exampnlle lines as well as just accept them, It could
solve prob~lemns with andl witbout referring to examples. and its analogi-
cal references canl both dive into the midIdle of the example to pick out
a sigle fact ( analogical search control) or read the example fromi the
Iw"Qi ii la zigsea chi zig for a us-eful equlation ( transformnat ional analogy ). InI
of-der to go be 'voild qualitative simnila rity. simnulat ions were conducted
that modeled anl idealized good student and anl idealized poor student.
All foim r of th li ain findings from thle seif-expla nat ion stu tidy were re-
pro liiced inI thle ~onit rast bet ween the two sinmula tions, A part icila rI
S11l-I isig result wais t hat mlost of the learning occurred during p~roblemi

solvji g ve though the part icila r learning strategy we manipulated.
sIl-CX11ai at ion. operated] on1 lv duiring exa mplle stutdyving. Examina tion

f C a scaide',; processing showed t hat thie accelerat ion of its learnine d ur-
Iimgt pro bloiii solvuing was ca usedl by ( 1) analogical search control ohbtaini-
iii izore giilda tice from thle experience (derivation ) left b~ehindl bY self-
vx pla ii g thle examiplles . a imd I(2) p~robleml solving having prereqisite-
kniiw edge. obtained duiring exa inple st ud 'ving. that allowed it to reach
imipasesz where learning could a plrolpriatel ' take place.

The third step in the research program was to demionstate that Cas-
cadhe call simulate real student cognition at the 5 to 10 second unit of
azalvsis. We fit Cascade to subject protocols by forcing it to explain

$.;I 11\ liw same lines as thle subject and~ to (10 t ranzsfornmat ional analogy
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a I exact Iv I l ie( sa iie p)oint s as the sub ject. We also gave it inlitial knlowl-
pd(Ig I hat a pproximnated thle sub ject 's knowledge just prior to explaining
I Iice (xami pies-. Set it ng t hese paramnet ers, lus occasion ally' "niudging" lte

svt ifi.fced to fit Cascade to cover most of thle sub~jects' behavior.
S tichli ltliii , was ca rrie(I ont for all 9 ibjcct:;. nd thle result ig mat ch be-
tweel SYvt i and qubject behavior was evaluated. As one inight expern
given that C ascade was designed to imodel the subjects. almost ever. -

lugit did was also done 1) the subjects. Tables .5 and 7show that
over 95"'1 of ('ascades goals, occured inl the sub jects* behavior and were
achieve-ul the saniie way by b~othI simulation and~ sulbject. Onl the other
hand. whl lien t lsi hec s* behavior is analy* zed inl termns of goals and inifer-
eitces. a bout 75'," of their exaiple-st udv\ing behavior and between 6(i;tl
anid 90t(L of t liu prolem-solvi jg behavior is miatchied by (Cascade goals
a iud N ieeics ost of ft(i uninat cled behavior concerns mat henmatical
iaii )1 a ti iis anmd Ot her skills that Cascade was not intended to iiiodel.
It was founid t hat lte main iula(equacv inl (ascade is its simple mnodel of

ransmu -iima t oia I anialogv. Su bject.s were quite clever at formning useful
ammalogie- wit Ii the examnplles. andl eslpeciallv their free- body (ldiagrans.

I'lie fouirth Iitep ili thle research progranii is to use the fit ted mlodels of
iiil%~~ inl ;iiblectis to fiind out more about their learning. Umufort unatelv.
wev dIiscovered (iring the current fitting t hat somle of our- assumptions
a Ii ii initi al knowledge were inicorrect. so we will Iav to rerui t he
fl t IP f xeilcise, wt Ii1 new assu m l) ons before con(liict ing thlese anialv'yses.
.N ujet lele. a few% specula tive remarks canl he inadle on lte basis of tlite
exislit gaalss

Wewvre surpr~isedl t hat there were so few clear-cut cases of impasse-
dii yen1 leali igp inl tilie protocols,. TIabIles 5 and 7 show that the subjects
had clear -ians of impasses onl only IS occassiolts when Cascade did
EliLC(, AItlioitgh a nal \vse- to be conducted later will tell us exactl v \\ I IY
lhin wereo so fpxw clear cases of learning. it appears that it is duie to

oVeru1se of ie( free-bodY diagrams. Most of the rules, learned b)*y thle idle-
a lized goo d slt u(Ieitit limnulat ion are used during, the iitial st age of solving
a prfi)I('ii. N% lienl a sit iza t ion Is a nalvyzed and1( t lie fotces andl accelerat ions
are Found. The examples cover this phase by m erely' presenting thme free-
body' diagram and1 perhaps adding a few lines of explanation for any
forces that they consider unobvious. As a consequence, most subjects

iiipl revpt d flip free- bodY' diagramis wit hout trYing to explain thieii.
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aniid i uis inissedl tilie opportunitY to learni. During problem solving, the
di agra ins were aga in o~ ertsed. This time they' sid) ject 5 tend~edl to Ilse

transformiat ioinal analogy to) adlapt anl exam ples free- body' diagram inl-
sieadl of figutrinig one out from their knowledge of physics. Tihus. tilev'
Wolld miss I he- Chance to do0 impasse-driven learning. This p~roblem w'as
eX a -I'rlt 1) ,t Iy lie fact t hat most of the 25 lprolems were (jell herat ely'
const rulcted( so as to have free-body diagrams that were similar to ones
in fihe examplles. Subjects who used transformiational analogy for these
p~roblems tended to get t ileti right. This meant that sit hjects could learni
very little and vet still get highi scores. For instance. one subject who did
hlot kniow about normal forces nonetheless got all of the -inormial force-
problemis right . III short, it a ppears that overuse of tile dliagramis. exac-
erbal ed bY thle design of the stutdy 's problem set, reduces the numbnler of
case,; of in jasse-(lriven learning.

Onl tilie (other hanmd. it could also be that subhject s had inst anmces, of
itmpasse-driven lea rning. but tile%- showed iio overt signs of thmt. Most
of I lie cases of overt inipasse-d riven learning camte fronm just two subjects
%%hIo were t hie miost vocal of thle subjects. It is likely that the ot her sulb-
iec t h iadt episodes of ImI)passe-d(riven lea rning but 'did not report t hem.
\\e had hiopedl to (letfect thIese silent impasses 1li'v seeing changes inl thle
sn h jcc '-; ln'lavior. That is. we had hoped to see one or more occasions
%% here Ie tf-o-he- lea rted rulle could he a pplied but was not . follow~ed bY a
, id ;I I i ug of occasions %%here thle rule was applied. The learinig evenit
\\01t hd he somew here inl lie vicinity of the transition from non-uisage to
tisawt. Tis tyite of analYsis succeedled in locating silent learning eventi
inl T w''r of H aino protocols ( Van Lehim . 1991Ia. almid finger couniitng pro-

ocols ( Siegler k .Jenkins. Nsf9: .Jones k Va iiLehin. 1991 ). Unifort unate 'lv.
mlost suilbjects in this stu ,idy either alwvays usedl a rule or alwvays avoided
it. I soume sense, thley* had tod(o t his, Subjects in tile twvofearlier st tdies
lea rienew alternative s1 ra tegies to solve a 1)roblein that the * couIld
a IreadY v olve. Thus, if tihey\ (lid not use one of thle to- be-learnied rules.
tie.\ alw\ays had thepir old1 rule to use instead. This was not the case inl
liepeet oit~ If a rule wvas missinig for a nlex% kinid of force, for ex-

amiple. thentitlie subjercs only alternative to learning a new rule was to
use a transformational analogy. Once they have successfully' used tranis-
formational analogy for this appearance of the new force, they would
end to use' it for all other appearances. InI this fashion. they would miss
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the oplportiiA to learn new rules. Ini short, if a ,,Il)je(,t was to learn a
iiiIe. t( ' xy tel(fl to lea in it onl the first occasion that it was possible to
learin it, If tli '1v 1iised anl all ernal ive to the, rule, then th heAy t ended to keep)
lisinig 1that all erja t ive thlrough thle endl of tlie st udv. Thus, we found few
1 ra iisitiobus froiui nlot using a rule to using a rule. and Ave have little solidl
Oelict, for silentl iuuipasses .

Ili short . it appeaQ~rs that there is less learning in the protocols t ha ii
we hiad hoped. althbough t his might be partl 'A ali artifact of our inlabihit v
Io flet ect silent impasses . Nonet lieless. there is much to be learned by*
exa miniiing thle i ust ances of lea rning that did occur. For ist anmce, it wvould
1be P-4ood to( finid ouit if analogical search control reallY did play a role ill

gui id ing Ilie sihji-cts to1 all app~lropria te impasse.
'ascade is based onl thle assumpjt ion t hat thle self-explaiiat ion effect is

(1114 solely to a dIifferenice in example-st udving ha bits rat her t hani a dif-
fer;,nce iliior knowledge. Surprisingly. t his assumpt ion held upl ev-eu
(hiriiig tilie fitting of individual protocols. However, wve expect sonie
cha leu ges to a rise dlurinig the nuext set of anial ' ses. It may *b e that tilie

sub ecs' policies allowt using t ransformnat ional a nalogy are just as m
prt ant as self-expla nat ion inl determnuinig wvhet her learning will take

place. W~e suspect that effective lea rninig requires b)othI that thle subject
('N pl;1i .1ia i examiplle anld t hat t hey' try-i not to refer to it durinig prolblemi

(oI vingw for pur-poses of obtaining a free-body'A diagram or an equiation.
Onu t he ot her hanid. referring to thle examnple for advice onl which rul e to
choo14se (ania logical search control) should be encouraged. Met hodologi-
callxy. tHie coniplexitv of this speculative prescript ion s fw ie advantage-
4of sliiula tion-based anialv ses of behavior . A prescript ion based onl just
thi, ( *Iliiet. al tId *1 %- would be simp ller aiid p~erhiaps uiot as effective.

'ascade hw promise as a general model of cognitive skill acquli-
~i ilin bull it needls considera ble work be 'yond fixing its model of tranus-
hriM-iatIioial anualogy. Iii order to lbe a more comphlete account of thle

plhimsiieia at hanid . it needs a muodlel of a nalogical ret rieval aiid of tile
difrh'r#.mce bet ween phys vical anmd mental refereiices to the examples. We
hEi'V4'w thle existing mechanisms ca u also handle some well- known phie-
iioiieina of skill acquisition. such as practice amid traiisfer effects, but
his nueeds to be denmist rated. The major limitation onl the genieral-

itY of Cascade :1 is its use of monotonic reasoning. With thle hielp of
Rholf Plotptzneir. weP are currently incorporating a version of thle situation



calculus which will greatlyN enhlance the ty. pes of reasoning Cascade can
m,,ll. and thus1 11 lie nii,,ilr of task doillaiiis t hat it call model. We
are "encoutragfd to extend Cascade to become a titiore complete. itiore
general miodel of learning by its similarity to other theories of cognitive
skill acqislit loll (e.g.. Andlerson. 1990: Schaiik, 1986). It is considleral ly
sin q der t Iia i t hose( t heories and probab %.l more t horoughlY imnplemntedl
ad ltest edi. We hope that li-S simnplicit y and empirical adequacy rein ain
intact as, it is extend~ed.

FiiiallY, these results shted some light on the possibilit 'N of using iiia-
chlittle- to acquire knowledge for exp~ert systems from ordinary hiuman
min'rtict lonal mat erial. Ali' Al expert would suspect that miachinies
wvould have a hiard time learning from humian materials because t hey*
lack coinnmioii sense. It turns out that common sense was important for
Cascadl'q lea rning. bult it was not lparticlllarly hiard to provide it.Con

miti sel was encodled inl the non-domnain knowledge given to C ascade
a,; part oIf its initial knowvledge base. Most of the nion-domlainl knlowi-
vlge conce0riked geonmetric reasoning, commnon-sense physical reasoning
abIoi ptishes and pll-,1. and most significantly. overly'N general rules. This
kimn ledge was; used during EBLC to formn new physics-specific (lmainl
kitmwledap. Hence. common sense knowledge was crucial because it heav-
liv coust ra i ied lea rning,. Onl t he other hiand, it was not lpart icularl 'N hard
to figii n' on w %%hat t hat knowledge should lbe. W~henever Cascade would
1,41Mch all inpass that it could( not resolve wit Ii its existing coinmon sense
kmowelgo. it was usuallY quite simple to specify that knowledge. After
all, it is comiimon sense.
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APPENDIX

l'is, apptlvdi\ contains ali example of a siibject's protocol encoded
at thie lvl of"( ascade-like subgoals. The protocol appears in the left

column, and the encoding appears in the right. An (R)' in the left

column indicates that the subject is reading the problem aloud. The
codiml procedure consisted of pretending that the subject was a version
,14 vcanIi. and eneratlng the problem-solving trace that this version
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of ( 'ascade wouldI have to generate to lead to the utterances-. found ill the
prot occl In orlr for. Hie sn hjects act ions to fit int o (ascade's conitrol
si md nlre. it was sometimes ilecessarv to hypothesize problem-solvimig
goals 11il atre not verbahized.

The ( aIscade model contains, four typ~es of goals:

* val tae( X): find( a value for the quanutity v.

* solve( X=Y): find a solution to the equation X=Y.

" ret rieve( example ): find anl examplle similar to the current problem.

" eqiiat iomm( N: find aii eqjuat ion that canl be usedl to conmput e a value
for N.

Eachi goal appears wvit I an -S:- when thle goal is posted anid anl 'F:"
w iteu a soltilIiou 10 I lie goal has beeni founid. in addition. t he iiodel
qsoinies iimiist explicitl' I"backt rack" over some subgoals to account
for backt racking behavior by the subject.

'he coding p~ro'ess allowed us to fit the Itv pothet ical Cascade mlodel
as closely* as possible to thle subject's behavior. lit doing this. wye wveme
able to ideit if 'v sped fi c locations, at which thle current i inplenintat ion
of C ascadle wvoild fail to generate the subjects behavior. At these loca-
timiis. wewould liave to mininall 'v "midge" the system onto thle correct
reasoiiing pl)l i. Events of this typ~e are marked wvit 11 event numbers in
lie rit i-hand margin.

This part icuilar protocol concerns a "poor- subject solving a comii
ii at io pidu 11e-iniclinle p~roblem. The subject init iafll retrieves thme pulley
Oxaiii ple anid copies thle equial ions for tension anmd acceleration fromt t hat
VVxa ipie. For thle imost parit. the su bject a ttempjts to directly' apply t hese
eq imi tins to fthle cii rent p~robllemt (a st rat egy t hat will lead t.o anl incorrect
s i t ion ). TI'he sit bject comnput es thle tension of thle st ring and the accel-
(,ratio oOf thle frpe-hianging block in this manner. However. tc compute
Ie( a(ct elera tiou of thle block oii tilie inicliine. thle subject assumes his result
for acceheraltionl froim ithle Cop~ied equiatlions is actuial " N. t lie p~rojcdt ion of a ii

acceleration vector that points down the incline. The subject apparently
does not have a rule for comnputing the projection of an acceleration vec-
t or. so lie converts it to a force vector by multipl ' ing the acceleration
h)I t Ies imas- of tlip block ( F = ma). Hep then computes the projectioii



of t lie force vector and converts the result back to an acceleration with
r=?In again.
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Rroblem: q5
Subject Sl03 Hypothetical Cascade model

Okay. I
(R) A block of mass ml equals 3.0 slugsI
on a sss... .smooth
incline plane of angle 30 degrees is
connected by a cord
over a small frictionless pulley to a
second block of massI
m2 equals 2.0 slugs hanging vertically.1

ISoughts: accel(ml), accel(m2),
I tension (cord)

(R.) What is the acceleration of each IS: value(accel(ml)), value(accel(m2))
body? I
Okay. I
That would just ... I

Okay, the acceleration...I
That would be M.. ..... that would be I S: retrieve(example)
like the pulley I F: retrieve(example): px
again... .this equation. (mumbles) I S: equation(ml), equation(m2)
This one. I S: equation(ml)

I F: equation(ml): T-mlg-mla
I S: ; quation (m2)
I F: equation(m2): T-m2q-=m2a
I F: equation(ml), equation(m2):
I T-mlg--mla, T-m2g--m2a

Okay. I
Umm... I
Okay. I
Wait. I
if ... I
Find the tension of the whole ... I
Okay, I want to find the tension of thet
whole thing again,
and then I can find the acceleration
for each one, and use
that to find force for eh... for the
second... .well I'll useI
it.
Okay, if I use that to find the + S: solve(accel(ml)= 1
component of the force like IFn(proj (accel (ml)))),
for the F ... I solve (accel (m2) =

I proj (accel (m2)))
The Y component for this ml block on I S: value(Fn(pro!(accel(ml))))),
the slant, and find the I value(proj(accel(m2)))
whole force, then I'll find the whole I S: value(T) [value(tension(cord))]
acceleration for that. I
Okay.I
So that would be T equals 2 times M... I S: equation(T)
Two times mass one is 3.0 times mass I F: equation(T): ((2mlm2)I(ml+m2))g
two is 2.0 over mass one I S: solve(T-((2mlm2)/(ml+m2))g)
plus two, is 3.0 plus 2.0.. time I S: value(ml)
slugs ... I F: value(ml):3.0

I S: value(m2)
I F: value(m2):2.0
I S: value(g)
+ S: value(system(problem)) (2)

What system is slugs? + S: value(system(slugs)) (3)
Where is that table again? I
Here. I
Slugs is feet and all. I F: value(system(slugs)):
So that would be... I british

I F: value(system(problem)):
I british



a

Gravity would be 32 feet per second I F: value(g): 32
squared.

I S: solve (T=((2*3.0*2.O)I
I (3.O+2.O))*32)

I S: value((2*3*2)/(3+2))*32)
I S: value((2*3*2)*32)
I S: value(2*3*2)

okay, so T equals 2 times 3 is 6. S : value(2*3)
I F: value(2*3) : 6

Time... .12() is 36 times 2 is 12. I S: value(6*2)
I F: value(6*2): 12
I F: value(2*3*2): 12

12... .time 32 equal... .divided by 5. S : value(12*32)
I F: value(12*32) : 384

F: value((2*3*2)*32): 384
I S: value (384/ (3+2))
I S: value(3+2)
I F: value(3+2): 5
I S: value(384/5)

Equals 76.8. IF: value(384/5): 76.8
I F: value(384/(3+2)): 76.8
I F: value((2*3*2)/(3+2))*32): 76.8
I F: solve(T=((2*3.O*2.O)/

(3.O+2.O))*32): T=76.8
I F: solve(T=((2mlm2)/(ml+m2))g):

I T-76.8
Okay. I F: value(T): 76.8
And the acceleration ... I S: value(Fn(proj(accel(ml))))
For ml the accel ... + Backtrack (4)
I'll do m2 first. S : value(proj(accel(m2)))
Acceleration for m2 is the lighter I
one, would be ...
Ahh. .. .T minus mlGm2V equals m2A... I S: solve(T-m2gnm2a)
76.8 minus 2 times 32 I a-proj(accel(m2))]

5: value(T)
IF: value (T) : 7 6. 8

S : value(m2)
I F: value(m2): 2
I S: value(g)
I F: value(g): 32

equals 2A. I S: solve(76.8-2*32=2*a)
2A equals 76.8 minus 64 would be 12.8. IS: value(76.8-2*32)

S: value(2*32)
I F: value(2*32) : 64
I S: value(76.8-64)

F: value(76.8-64): 12.8
I S- value(76.8-2*32): 12.8
I S: solve(12.8.2*a)
I S: solve(a=12.8/2)
I S: value(12.8/2)

A would be ... 6.4. IF: value(12.8/2): 6.4
I F: solve(a-12.8/2): a=6.4
I F: solve(12.8-2*a): a-6.4
I F: solve(76.8-2*32-2*a) : a-6.4
I F: solve(T-m2g-m2a): a-6.4
I F: value(proj(accel(m2))): 6.4

And for ... I
ml ... I S: value(E'n(proj(accel(ml))))

I S: value(proj(accel(ml)))
T minus miG equals negative miA I S: solve(T-mlg--mla)

I ([a-proj (accel (ml))]
Will be 76.8 minus 3 times 32 equals IS: value(T)

I F: value(T): 76.8
I S: value(ml)
I F: value(ml): 3
I S: value(g)



I F: value(g): 32
negative 3A... IS: solve(76.8-3*32--3*a)
That's 76.8 minus ( .. IS: value(76.8-3*32)
76.8 minus 96 equals negative 19.2. IS: value(3*32)

I F: value(3*32) : 96
I S: value(76.8-96)
I F: value(76.8-96): -19.2
I F: value(76.8-3*32) : -19.2

Negative 3A equals negative 19.2. IS: solve(-19.2--3*a)
I S: solve(a=-19.2/-3)
I S: value(-19.2/-3)
I F: value(-19.2/-3): 6.4

So A equals 6.4 again. IF: solve(a=-19.2/-3): a=6.4
I F: solve(-19.2--3*a): a-6.4
I F: solve(76.8-3*32--3*a): a=6.4

I F: solve(T-mlg=-mla): a=6.4
I F: value(proj(accel(ml))): 6.4

It's meters per ... I
No it isn't.I
It's feet per second squared.
This is feet per second squared.
Okay, but that's just the vertical
part.
Cause it's not a slant.I
So you can find...I
Force equals ma.. + S: solve(F-ma) [a-accel(ml)] (5)

S : solve(a=F/m)
I S: value(F/m)
I S: value(F)
I S: solve(F=Fy/sin 30)
I S: value(Fy/sin 30)
I S: value(Fy)

And so it would be Fy equals mAy IS: solve(Fy-m*ay)
I [(ay-proj (accel (ml)))

Fy equals mass is 3 slug times 6.4 S : value(m*ay)
S: value(m)
F: value(m): 3
S: value(ay)
F: value(ay): 6.4
S: value(3*6.4)

equals 19.2 pounds. F: value(3*6.4): 19.2
F: value(m*ay): 19.2

I F: solve(Fy--m*ay): F=19.2
I F: value (Fy) : 19.2

Okay, then F would equal Fy over the I
sine of 30 degrees.I
f......I
Equal 19.2 over the sine of 30 S : value(19.2/sin 30)
degrees equals 19.2 divided byI
30 degrees sine equals 38.4 pounds. IF: value(19.2/sin 30): 38.4

I F: value(Fy/sin 30) : 38.4
I F: solve(F=Fy/sin 30) : F=38.4
I F: value(F): 38.4

Okay, then.
Acceleration ... I
F equals ma ...
38.4 pounds equals... .mass is 3 slugs S: value(m)
times A. IF: value(m): 3

I S: value(38.4/3)
I F: value(38.4/3): 12.8
I F: value (F /m) : 12. 8

A equals 12.8 feet per second squared. I F: solve(a-F/m): a-12.8
I F: solve(F-ma): a-12.8
I F: value(Fn(proj(accel(ml)))): 12.8
IF: value(Fn(proj(accel(ml))))),


